A Conceptual Framework for Safe Object Initialization
Clément Blaudeau, Inria & Université de Paris Cité, France

Fengyun Liu, Oracle Labs, Switzerland
Splash/Qopsla 2023, 27/11/23

1 class A {

2 var = 42 :: this.x
s var x = List()

4 }

Initialization errors
1 class A { = Early field access

2 var x : List[Int] = this.m() C [Exriy mahaed el

. def m() = 42::this.x = Incorrect escaping

5}

1 class A { Objects under initialization do not

2 var b = new B(this) fulfill their class specification yet

s var x = List()

0t — Breaks the key assumption of OOP!
5 class B (a:A) {

6 var y = 42 :: a.x

7 ¥

2 (1)/ 13

Complex initializations

Cyclic data structures Early method call
1 class A O { 1 class Server (a: Address) {
> var b = new B(this) > var address = a
3 var c = this.b.c 3 var _ = this.broadcast("Init")
4 } 4« ... // other fields
5 class B (arg:A) { 5
6 var a = arg 6 def broadcast(m: String) = {
7 var ¢ = new C(this) 7 ... // sends a message
s } s
o class C (arg:B) { o }
0 var a = arg.a

11 var b = arg

3(1)/ 13

Expressive

Sound Modular

= No access to uninitialized field = (Class-by-class analysis

= Limited footprint

Expressive Usable
= Authorize controlled escaping = Understandable principles
= |nference

4 (1)/ 13

In this presentation
1. The Celsius model of initialization

2. The Core principles

= High-level, language agnostic
= Design choices a the minimal calculus with type annotations

3. Local reasoning (overview)

In the paper

= The minimal calculus

= The typing system (with temperature annotations)

= The (modular) soundness proof (based on the principles)
= The Scala implementation

= The Coq artifact

5 (1)/ 13

The Celsius Model

)
°
=}
£
(2]
=
=
)
o
)
=
[

hot

[warm]

cold

initialization state

6 (1)/ 13

The core principles

Principle 1/4: Monotonicity

= = —
> time
Partial monotonicity =< Design choices (for the calculus)
Fields cannot be un-initialized = No de-initialization

language design
Perfect monotonicity < (languag 'gn)

= Update fields only with hot values

Initialization state of every field .
(typing)

cannot decrease

7 (1)/ 13

Principle 2/4: Authority

[cold] [] hot

= ~ }
t } >

M

Local vision of the initialization state might differ between aliases

Authority Design choices

State updates are only authorized on a = Type updates (up to warm) only
distinguished alias : this inside the constructor

= Distinguish 1% assignment / update

8 (1)/ 13

Principle 3/4: Stackability

Stackability Design choices

All fields must be initialized at the = Mandatory field initializers
end of their constructor = No control effects

— constructors form a call stack

9 (1)/ 13

Principle 4/4: Scopability

[cold] [] hot

N
s
A

Nested /parallel initializations — Control the accessible part of the heap

Scopability Design choices

Access to objects under = No global variables (see Liu 2023)
initialization must go through = Over-approximate reachable
controlled channels objects

10 (1)/ 13

Local reasoning

Theorem (Local reasoning)

Executing an expression in a hot environment results in a hot object

Proof.

In the resulting memory, accessible objects are either

= new and therefore warm (by stackability)

= old, so already accessible in the execution environment (by scopability), and
therefore still hot (by monotonicity and authority)

— gives rises to a typing system with hot-bypasses: you can safely ignore
initialization issues when handling hot objects

11 (1)/ 13

Examples in Celsius syntax

1 class A () { 1 class Main () {

> var b: B@warm = new B(this) > var a: A@hot = mew A()

5 var c: C@warm = this.b.c s // ignore initialization checks
4 } 4 }

5 class B (arg: AQ@cold) {

6 var a: AQcold = arg

7 var c: CQuwarm = new C(this)
s }

o class C (arg: B@) {

1 var a: AQcold = arg.a

11 var b: B@ = arg

2 }

12 (1)/ 13

A conceptual framework for safe initialization

— a simple interface to a subtle problem

= the Celsius model (cold, cool, warm, hot)
= Four language agnostic principles

= Local reasoning

See the paper for precise definitions, typing system, soundness proof,

C(Ia!siusJ

implementation in Scala!

github.com/clementblaudeau/celsius

13 (1)/ 13

github.com/clementblaudeau/celsius

	The Celsius Model
	The core principles

