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Chapter 1

Features and challenges of a
modern module system

The purpose of abstraction is not to be vague, but to create a new semantic
level in which one can be absolutely precise

- Edsger Dijkstra

In this chapter, we introduce the design space of ML-modules informally. We present the
key features, the strength and weaknesses of modularity à la ML. While the type theory is
developed more thoroughly in Chapter 3 and Chapter 4, we gathered the key design insights
and present them here. This chapter serves both as an introduction, a summary and a plan
for what the future of ML modules might look like.

Features Throughout the chapter, we present both language mechanisms, language proper-
ties and language constructs – we refer to all three as features. In each section, we summarize
the features using the following marks: M for mechanisms, P for properties and C for con-
structs. As we do both an overview of existing features and a whish-list of what would
constitute a fully-accomplished ML-module system, we use symbols to indicate the status of
each feature:

 represents largely supported and well understood features
 represents partially supported features, for which the theoretical background might be

missing or the implementation incomplete
+ represents new features that are not supported in current implementations, but for

which we advocate
Unless stated otherwise, the status symbol applies to OCaml, but comparisons with SML,
Moscow ML, or experimental languages such as 1ML are made. We sum up those features
in Section 1.8.

Code inserts We display code inserts with the following convention:

1 This is an OCaml (or OCaml-like) code insert
1 This is the result of typechecking when it succeeds
1 This is an error that occurred during typechecking

Contributions In this chapter, we provide a complete, unified and updated overview of all
features of ML-module systems. We present language-design solutions as well as some new
features, especially regarding tools for abstraction.

Overview After presenting the basic building blocks in Section 1.1, we focus on the key
mechanism of type abstraction.

In Section 1.2, we explore the interaction between abstraction and functors. It leads to
the distinction between generativity and applicativity, and the module equivalence problem.
We discuss an extension of the syntactic criterion for applicativity via the new feature of
transparent signatures.

13



14CHAPTER 1. FEATURES AND CHALLENGES OF A MODERN MODULE SYSTEM

In Section 1.3, we focus on the interaction between abstraction and projection, which
poses the (infamous) signature avoidance problem. We present the main approaches to this
problem, as well as the solution followed by the current OCaml implementation. We discuss
the need for a type-preserving solution, and for a mechanism to delay avoidance.

In Section 1.4, we move from type-level abstraction to module-level abstraction. We
present the current state of the feature in OCaml, as well as a proposed restriction of simple
abstract signatures.

In Section 1.5, we discuss the composition between modules, i.e., the way modules can
be combined together. After presenting hierarchical and flat composition, we briefly discuss
recursive modules and open recursion, both from a typing and semantic point of view.

In Section 1.6, we present other advanced features, starting with those enabling a better
interaction between the module language and the core language, namely first-class modules
and modular explicits/implicits. Then, we move on to the features for signature manipulation
and miscellaneous ones.

In Section 1.7, we briefly compare ML-style modules with other approaches of modularity
from other languages, mainly object-oriented programming and type-classes.

Finally, in Section 1.8, we sum up all the features presented in this chapter to give an
overview and a vision for a fully-accomplished, modern, and powerful module system.
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1 (* Cartesian implementation *)
2 module Complex = struct
3 type t = float * float
4 let one = (1., 0.)
5 let zero = (0., 0.)
6 let add (a,b) (c,d) =
7 (a +. c, b +. d)
8 let mul (a,b) (c,d) =
9 (a*.c -. b*.d, b*.c +. a*.d)

10 let imaginary_part (a,_) = a
11 let complex_part (_,b) = b
12 end

13 module type Ring = sig
14 type t
15 val zero : t
16 val one : t
17 val add : t → t → t
18 val mul : t → t → t
19 end

1 module CRing = (Complex : Ring)

1 module Polynomials =
2 functor (R : Ring) →
3 struct
4 type t = R.t list
5 let zero = []
6 let one = [R.one]
7 let rec add p1 p2 = match p1,p2 with
8 | x1::p1, x2::p2 →
9 (R.add x1 x2)::(add p1 p2)

10 | [], _ → p2
11 | _ , [] → p1
12 let rec mul p1 p2 = match p1 with
13 | [] → []
14 | x1::p1 →
15 add (List.map (R.mul x1) p2)
16 (mul p1 (R.zero::p2))
17 end

19 module CX = Polynomials(Complex)
20 module PolynomialsXY (R : Ring) =
21 Polynomials(Polynomials(R))

Figure 1: Basic modularity example (in OCaml).

1.1 Basic modularity

We start with the basic constructs of ML modules. An introductory example is given in
Figure 1 and developed in this section.

Module layer The key design choice of ML is that modularity is provided by a separate
language layer, the module layer, that uses different keywords an mechanisms from the rest of
language, called the core-language. As a consequence, both languages can be designed with
different trade-offs, adapted for programming in the small and in the large. For instance,
in ML, the core-language uses a first-order type language, but is equipped with a powerful
inference engine that makes is mostly implicitly typed (and yet predictable). By contrast, the
module-layer has powerful type language, but requires explicit type annotations.

Structures The basic building block of ML modules is the structure, obtained with the
keywords struct/end. Definitions inside a structure are called bindings Inside a structure, the
user can bind values and define new types, each associated with a name. Bindings have an
open scope: the name they define is accessible for the rest of the enclosing structure. This is
especially visible for value bindings: they are made with the let keyword, but there are no
corresponding in: the scope is open.

Type definitions Type definitions are made with the type keyword. OCaml offers a
rich variety of type definitions: algebraic data-types (ADT), generalized algebraic data-types
(GADTs)Garrigue and Rémy [2012], objectsRémy and Vouillon [1997], polymorphic variants,
extensible types, parametric types, type annotations (variance, unboxing, etc.), private types,
type constraints, etc. New proposals are often made to extend the type definition mechanism:
the latest being (at the time of writing) modal memory management Lorenzen et al. [2024].
The type definition mechanism sits a bit in-between the core and module layers: it is a
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construct of the module language but is technically supported by the core. The module
language is more or less agnostic of the structure of type declarations.

Manifest types OCaml also supports manifest types Leroy [1994]: as done in the mod-
ule Complex, one can give a name to any already-existing type expression (here, float*float).
In practice, this feature is essential, as it allows to use short, local names for type expressions
that might be big and clutter the program. It also acts as a light form of encapsulation. Type
manifests are handled by the module layer.

Signatures The type of a module—obtained by inference or written by the user—is called
a signature. The signature of structures are called structural signatures and uses the keyword
sig/end. Definitions inside a structural signature are called declarations 1. Signatures can be
named via a module-type binding, as illustrated by Ring. This is especially useful, as signature
can grow very big and clutter the output if no short names are used. While the nomenclature
in the literature can vary, in this thesis, we refer to the type of modules as signatures, while
module-types only refer to the binding/declaration.

Type Abstraction The killer feature of ML modules, that is also the crux from a formal-
ization point of view is type abstraction. Type declarations can be left abstract, as the one
at line 14. This allows the definition of new types that are only compatible with themselves.
Abstract types provide a powerful and flexible mechanism for encapsulation, that we will be
the heart of the discussion throughout the rest of this chapter.

Controlling the outside view of a module Signatures can be used to control interactions
between modules in two ways. First, the outside view of a module can be restricted to protect
internal invariants by an explicit ascription to a given module type (line 1). This basically an
up-cast, requiring a subtyping check between the inferred signature of the module expression
(here, the inferred signature of Complex) and the user-provided one (here Ring). This check is
structural : there is no need to mention the Ring signature at the definition point of Complex, it
is sufficient to have the appropriate fields. By contrast, with nominal subtyping, the subtyping
relations must be made explicit up front, which is less flexible and imposes an order in the
definitions of module and interfaces.

Ascriptions can be used to (1) hide fields (making them inaccessible from the outside),
(2) reorder fields (regardless of the original order of definitions), and (3) abstract type compo-
nents, which hides the underlying implementation while keeping the name visible. The basic
form of ascription is also called opaque ascription—we will later see transparent ascription in
Section 1.2.4. Here, CRing.t is an available type, but its implementation as a pair of floats is
hidden: one cannot coerce a pair of floats into a CRing.t value.

Controlling dependencies of a module Signatures can also be used to restrict how a
given module depends on (i.e., uses) other modules. This is achieved by turning the module
into a functor. Here, Polynomials is a functor that can take any implementation R satisfying
the Ring interface and that returns an implementation of the ring of polynomials over R. The
body of the functor is polymorphic with respect to the abstract type fields of its argument,
and thus, does not depend on their actual implementations. Functors can then be called and
composed: Polynomials can be applied to modules satisfying Ring such as Complex and CRing
(lines 19), but also the output of Polynomials itself (line 21). There is a subtyping check at
functor application, which induces a run-time coercion.

1The terminology is not fully stabilized in the literature regarding the distinction between bindings for
fields of structures and declarations for fields of structural signatures. In some works like Rossberg and Dreyer
[2013], bindings are called definitions, and declarations are called specifications.
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Hierarchy Modules can be nested inside other modules as sub-modules. Correspondingly,
submodules can be extracted by projection: M.X extracts the submodule X from M.

Higher order functors As expected by users of functional languages, functors can be
higher order : they can take another functor as input. Historically, higher order-functors have
been a technical challenge, especially before the introduction of applicative functors (see Shan
[2004]; Dreyer et al. [2003]; Leroy [1995]; Biswas [1995]; Harper and Lillibridge [1994]; Harper
et al. [1989], among others).

Overall, we have the following basic features

 M Basic modularity: structures, signatures, value bindings/declarations, submodules,
type and module-type bindings/declarations.

 C Type manifests: creating new names for already-existing types
 M Abstract types
 M Interface control: ascription (interface of exports) and functors (interface of im-

ports)
 M Higher-order functors

Regularity and robustness A good property for languages, especially in the context of
modularity, is its regularity : the user should be able to arbitrarily nest and use the features,
without restrictions like being at top-level. It is partially the case in OCaml: submodules can
be arbitrarily nested, ascription can be used at any point, functors applications can be written
with an anonymous functor and anonymous argument, functors can be higher-order. However,
other constructs, such as projections, are syntactically restricted to module identifiers (we
expand on the technical reasons behind this choice in Section 1.3). This is detrimental for the
usability of the system, as users might run into hard-to-predict unsupported edge-cases when
trying to have an advanced use of the language.

Another good qualitative property is the robustness: the the predictability As an example,
the language support neither let-binding nor inlining of definitions! Let-binding can break
the syntactic criterion of applicativity, which we discuss in Section 1.2.3—it can be fixed
with transparent signatures. Inlining the definition of a submodule (or let-inlining) can cause
signature avoidance, as discussed in Section 1.3. This breaks the subject reduction property
of the intuitive call-by-value semantics.

 P Robustness

Summary At an high-level, ML modules can be understood as a small separate calculus
built on top of a source language, with standard features re-branded with ML nomenclature.
Structures are basically records: bindings are record-field expressions and declarations are
record-field types. Projection is just record access. Ascriptions are explicit type castings
(only up-casts), and functors are just functions. However, in addition, signatures contain
abstract types. The crux of ML modules is the interaction between abstraction and other
features, which we discuss in the following sections.

Other introductions to ML-modularity can be found in Dreyer et al. [2005]; Russo [2004];
Leroy [2000] (among others) or in Pierce [2004] (Chapter 8).
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1 module Tokens () = (struct
2 type t = int
3 let x = ref 0
4 let fresh () = let n = !x in x := n + 1 ; n
5 let eq x y = (x = y)
6 end : sig
7 type t
8 val fresh : unit → t
9 val eq : t → t → bool

10 end)
11 module PublicTokens = Tokens()
12 module PrivateTokens = Tokens()
13 (** PublicTokens.t =/= PrivateTokens.t *)

(a) A generative functor — OCaml functors are made generative by having () as their last parameter.
Here, each application of the Tokens functor produces a module with its own internal state that
generates fresh tokens independently.

1 module OrderedSet (E:Ordered) = (struct
2 type t = E.t list
3 let empty : t = []
4 let rec add x s = match s with
5 | [] → [x]
6 | [y::s] → if (E.lt x y) then (x::y::s)
7 else (y::(add y s))
8 end : sig
9 type t

10 val empty : t
11 val add : E.t → t → t
12 end)
13 module S1 = OrderedSet(Integers)
14 module S2 = OrderedSet(Integers)
15 (** S1.t === S2.t *)

(b) An applicative functor — Functors are applicative by default in OCaml. Here, OrderedSets(E)
is a module implementing (ordered) sets of elements of type E.t. Applicative functors can be used in
paths directly, leading to S1.t = OrderedSets(Integer).t.

Figure 2: Examples of generative and applicative functors.

1.2 Functors and abstraction

1.2.1 Applicative and Generative Functors

Both modules and functors can be used to either structure the code base or to build reusable
components. In the latter case, several instances of a functor application may be available in
the context when combining different pieces of code. This is typically the case for modules
providing common data-structures such as lists, hash-tables, sets, etc. When such functor
produces abstract types, a question arises: should every instance of the same application
produce incompatible abstract types, i.e., types not considered equal by the typechecker?
This question leads to the distinction between applicative and generative functors, which
have different semantics and correspond to different use cases. Both are supported by OCaml
and illustrated in Figure 2. If two instances have equal abstract types, there are effectively
compatible and the functions and values from each module can be used together. We say that
two instances are incompatible when they have different abstract types.
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Generative functors Applying a generative functor twice generates two incompatible
modules, with incompatible abstract types. The body of such functor might be stateful,
emits effects, or dynamically choose the implementations of its abstract types (using first-
class modules). Generativity can also be used by programmers as a strong abstraction barrier
to force incompatibility between otherwise pure and compatible data-structures that represent
different objects in the program. OCaml syntactically distinguishes generative functors from
applicative ones by requiring the last argument to be a special unit argument “()”. Therefore,
generative and applicative functors are syntactically distinguished: the unit argument () is
not the same as an empty structure. We find this effect-suggesting syntax of taking a unit
argument fitting, as calling a generative functor can indeed produce effects.

Applicative functors Conversely, applying an applicative functor twice with the same
argument produces compatible modules, with the same abstract types. The body of such a
functor must be pure and have a static implementation of its abstract types. In OCaml, it is
left to the user’s responsibility to mark impure functors as generative, the typechecker does not
track effects, only preventing unpacking of first-class modules and calling generative functors
inside the body of applicative ones. Applicativity acts as a weaker abstraction barrier, making
several instances of the same structure compatible. This is especially useful to provide generic
functionalities (such as hash-maps2, sets, lists, etc.) that may appear in several places and
yet be compatible. Applicative functors are the default in OCaml.

One could think that applicative functors are not necessary : the programmer could always
have factorized in advance the functor applications that happen to be duplicated and only
use generative functors. In practice, this would be very restrictive, as it requires a non-local
program-wide change and prevents many concise patterns. In practice, applicative functors
where introduced by Leroy [1995] and quickly became one of the killer features of OCaml,
greatly contributing to the success of the language. Generative functors, the default in SML,
were added to OCaml only latter on.

 C Generative functors: necessary for effectful modules or dynamic choice of imple-
mentation (using first-class modules, see Section 1.6.1)

 C Applicative functors: crucial for sharing of pure functors without a priori factor-
ization of similar applications

+ M Effect tracking at the core level: applicative functors bodies should be pure. As
of now, it is left to the user responsibility, whereas a type-system check of purity would
provide a much stronger guarantee.

1.2.2 Abstraction Safety and Granularity of Applicativity

A key design point is the granularity of applicative functors: under what criterion should
two applications of a functor produce compatible modules? This problem was coined the
module equivalence problem by Dreyer [2007a]. We say that two modules are equivalent when
applying the same functor to both yields compatible abstract types.

An option, used in Moscow ML, is to consider modules to be equivalent when they
have the same type fields (same names and same definitions3). This criterion is called static
equivalence Shao [1999]; Russo [2000]; Dreyer et al. [2003]. It is type-safe: in the absence of
first-class modules, which are forbidden in applicative functor for that very reason, the actual
implementation of the abstract types produced by the functor can only depend statically

2Hashtbl.Make is actually pure, as it does not produce a new hash table itself, even though it contains
impure functions.

3This relies on some equality of types. For instance, it could be the cloture of syntactic equality and
applicativity – which might be problematic for recursive signatures with applicative functors.
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1 module S1 = Set.Make(struct type t = int let lt = (>) end)
2 module S2 = Set.Make(struct type t = int let lt = (<) end)
3

4 let s = S1.(empty |> add 1 |> add 3 |> add 2) (* [1,2,3] *)
5 let s’ = S2.add 2 s1 (* [2,1,2,3] *)
6 let test = S1.mem 2 s’ (* false *)

Figure 3: A simple example of a breach of abstraction safety. With the static equivalence
criterion, this code type-checks but mis-behaves. Specifically, the implementation of sets as
lists assumes that the list is ordered with respect to the comparison function. However, S1
and S2 do not have the same comparison function, but still have compatible abstract types.

on its parameters, thus only on its statically known type fields. Therefore, requiring static
equivalence is sufficient to ensure that the abstract types produced by the functor are the
same.

However, the static equivalence criterion can make two functor applications compatible
while they actually have different internal invariants. In the example on Figure 3, the lists
used to represent sets are ordered with respect to the comparison function of the argument
of the functor. Therefore, a typechecker implementing the static equivalence criterion would
allow a user to mix sets ordered with different ordering functions, which would produce wrong
results—but not crash.

Yet, developers often expect a stronger property called abstraction safety : abstract types
should protect arbitrary local invariants that may also depend on values. In the example
on Figure 3, applications of OrderedSets should produce compatible abstract types only when
both the type E.t and the values, in particular the comparison function E.lt, are the same.
Crucially, abstraction can protect invariants that cannot be expressed in the type-language4.

To preserve abstraction safety, we need dynamic equivalence, i.e., the runtime equality of
values. Unfortunately, it is undecidable in general. Besides, tracking even an approximation
of the equality of value fields would be too fine-grained and cumbersome, as modules may
have numerous value fields. To enforce abstraction safety while remaining practical, OCaml
follows a coarse-grain approach: tracking equalities only at the module level (not at the value
level). This was originally introduced as a syntactic criterion by Leroy [1995]: two functor
applications produce the same abstract types when they are syntactically identical. The
syntactic criterion therefore acts as a gross approximation of dynamic equivalence, preserving
abstraction safety.

 P Abstraction safety: type abstraction should protect arbitrary invariants. While
easy to verify for the rest of the language, applicative functor need a special treatment:
their module equivalence criterion should be a subset of dynamic equivalence.

As a summary, applicativity of functors relies on a criterion for module equivalence. We
distinguish two notions of equivalence:

• Static equivalence: the two modules have the same type fields (for some notion of type
equality). Using static equivalence for applicativity yields type-level applicativity.

• Dynamic equivalence: the two modules have the values at runtime. A subset of dynamic
equivalence can be tracked statically by the type-system, either (1) by tracking equality
between value fields, yielding value-level applicativity, or (2) by tracking equality between
modules, yielding module-level applicativity.

4This is a key point when comparing the module system of OCaml and proof assistants like Coq. In
the latter, all the properties of objects can be expressed directly as lemmas (or using dependent types) and
preserved by the type-system. Abstraction only serves to limit the reach of internal details.
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1.2.3 Module level equalities and aliasing

The syntactic criterion is however somewhat fragile, as, for example, it does not support
naming sub-expressions. In this subsection we present the OCaml extension of module aliases
that extends this criterion in a somewhat restricted way.

Two paths with functor applications are considered equal when they are syntactically
equal:

1 module F (_:sig end) = struct end
2 module G (_:sig end) = struct type t end
3 module X = struct end
4 let f : G(F(X)).t → G(F(X)).t = fun x → x (* typechecks *)

However, naming a sub-expression breaks the syntactic equality:

1 module FX = F(X)
1 let f’: G(FX).t → G(F(X)).t = fun x → x
1 Error: This expression has type G(FX).t but an expression was expected of type
2 G(F(X)).t

Here, the type of module FX should manifest its module-level equality with F(X). Interestingly,
the OCaml feature of module aliases partially covers this need, even-though it was historically
introduced for unrelated reasons.

Module aliases To allow for a better management of namespaces, type-level module aliases
were added to OCaml: the signature language was extended with the alias declaration con-
struct moduleX = P to express that a module is a statically known alias of the module at
the path P . The main motivation behind this extension was to provide a mechanism to give
short names to modules without actually duplicating the module at runtime. It is especially
useful for accessing the standard library:

1 module M = struct
2 module A = StdLib.Array (* example of short name with module aliases *)
3 (* ... *)
4 end

Internally, the compiler maintains a flag to decide if the submodule can be removed from the
structure at runtime (absent alias, also called static alias) or should be kept (present alias,
also called dynamic alias). As it was designed as a namespace feature, it made sense to try to
prevent a dynamic copy of the aliased module if not necessary. However, it effectively merged
in the same syntax two very different features, and the user cannot easily control if the aliased
module will be present or absent in the end.

Yet, it opened the door to module-level equalities, somewhat reviving the structure sharing
mechanism of SML’90. In particular, the syntactic criterion was extended to include module
aliases (both static and dynamic), making the following code typecheck:

1 module F (_:sig end) = struct type t end
2 module X = struct end
3 module X’ = X
4 let f : F(X).t → F(X’).t = fun x → x

Restrictions However, the motivating example at the beginning of this section would not
typecheck: the aliasing of OCaml was designed for static aliases and is therefore quite limited.
In practice, for a declaration module M = P, the path P has the following restrictions (extract
of the OCaml documentation Leroy et al. [2024])5:

5https://ocaml.org/manual/5.2/modulealias.html

https://ocaml.org/manual/5.2/modulealias.html
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1. it should be of the form M0.M1...Mn (i.e. without functor applications);
2. inside the body of a functor, M0 should not be one of the functor parameters;
3. inside a recursive module definition, M0 should not be one of the recursively defined

modules.
The restrictions 1 and 3 were put in place to ensure that the aliased module is already
dynamically present, to make the static redirection meaningful. But those are not necessary
for dynamic aliases! (Restriction 2 is discussed in the next subsection)

Overall, we advocate for a separation of the two mechanisms for aliasing. The simpler
static aliasing is well suited to remain a declaration made inside an enclosing module, and
the aliased module cannot contain functor application, other recursive modules or functor
parameters. It should have a different syntax than dynamic aliases (discussed in the next
subsection).

 C Static aliases: to manage name-spaces (provide short names for modules), the user
should be able to define static aliases to other, already defined, modules. Static aliases
do not induce a copy of the aliased module, they are removed at runtime.

In the rest of this thesis, “aliases” refer to dynamic aliases by default.

1.2.4 Aliases and transparent ascription

In this subsection we present a technical issue with aliases, solved by the introduction of a new
feature of transparent signatures that provides a robust extension of the syntactic criterion of
applicativity.

Unlike static aliases, dynamic aliases don’t have to be restricted to paths without applica-
tions and could contain other recursive modules. Besides, the aliasing does not have to be at
the declaration level, but could very well be at the signature level. However, paths containing
functor parameters are an issue6. As an example, let us consider the following code:

1 module X : T = (* ... *)
2 module F (Y:S) = Y (* reexport *)
3 module X’ = F(X)

The module X’ cannot be given the expected alias signature module X’ : (= X), which con-
tradicts the substitution-based intuition. Indeed, if the type system were to maintain module
aliases through functor calls, it would impose strong constraints on the compilation of struc-
tures and functors that would drastically affect the performance trade-offs of modules.

To see why, one can consider the compilation of the body of the functor F. In order for
the body of the functor to be an alias of the argument, it should contain all of the fields
of its parameter, possibly more than the ones indicated in the signature S, and in an order
that might be different. Therefore, the static view of Y is a potentially strict supertype of
the dynamic structure given at functor application—while the static view is used to perform
direct accesses inside Y. Overall, this would force structures to have a dynamic representation
where they can always be seen as a subtype of their actual type, i.e., a representation with
code-free subtyping. Typically, using dictionaries with a dynamic dispatch through an access-
table provides a code-free subtyping representation of structures, at the cost of slower accesses
(due to the indirection).

However, in all ML-module systems, including SML and OCaml, structures are compiled
via static dispatch: accesses inside a structure are made with fixed offsets to be fast. In such
setting, subtyping is not code free, and explicit coercions are inserted at functor calls, which
break module aliases. Therefore, the type system does not follow the naive substitution
semantics for aliases inside functors, but instead uses a set of syntactically-based restrictions

6This issue stalled the pull request OCaml#10435 that aimed at extending the alias mechanism

https://github.com/ocaml/ocaml/pull/10435
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to prevent them in functor signatures. Those restrictions are not stable under substitution
and can be bypassed in some edge-cases7.

 M Static dispatch: “modules are often accessed but rarely reordered ”, the type system
should be compatible with a static dispatch compilation scheme that favor fast access
over code-free subtyping.

Transparent ascription to the rescue Interestingly, transparent ascription, originally
introduced as a module expression written (M : S) in SML, helps lifting this restriction. It
restricts the outside view of a module M to the fields present in the signature S while preserving
all type equalities. However, this feature does not increase expressiveness in SML as a similar
result could be obtained via a usual (opaque) ascription with a signature where all type
equalities have been made explicit. A proposal for OCaml8 is to add transparent ascription
as an extension not only of the module language, but of the signature language, writing
(= P < S) for the signature of a module that is an alias of P but restricted to the fields of
S, which we call a transparent signature. A module with such a signature has a module-level
equality with P and the content S. We say that it shares the same identity as P.

Transparent signatures provide a generalization of aliasing, storing both the aliasing in-
formation and the actual signature (hence, the memory representation). The transparent
ascription expression à la SML (P : S), is then just syntactic sugar for an opaque ascription
with a transparent signature (P :> (= P < S)) (in SML syntax).

Thanks to transparent signatures, aliasing information can be preserved through the im-
plicit ascription at functor calls. As OCaml features applicative functors (unlike SML), this
would increase the expressiveness of the signature language. Besides, concrete signatures are
compatible with static dispatch and copying at function calls allows deletion and reordering of
fields while keeping type equalities. The motivating example of the beginning of this section
would give :

1 module X : T = (* ... *)
2 module F (Y:S) = Y (* reexport *)
3 module X’ = F(X)
1 module X’ : (= X < S)

Another, more realistic example of code pattern where transparent signatures are necessary
is given in Figure 4. This pattern arises when combining a functor (Make3D) that reexports its
argument (K) with an applicative functor called twice (Set), once on the argument and once on
the reexported argument so that the modules resulting from both applications may interact.
Here, the fixed interface VectorSpace could not be functorized to explicit the dependency with
the underlying field, as not all vector spaces are functors over a field. Besides, type-level
sharing is not sufficient to obtain the right type equalities when calling the Set functor.

+ C Transparent signatures (dynamic aliases): to extend the syntactic criterion
of applicativity in a manner that composes well with functors, we propose to store
both the module level equality and the dynamic signature using transparent signatures.
This would lead to a much more robust notion of module equivalence that extends the
syntactic criterion.

 M Robust let-binding with submodules: using transparent signatures, the user
should always be able to bind module expressions as submodules without breaking

7See the following issues: OCaml#7818, OCaml#2051, OCaml#10435, OCaml#10612 and
OCaml#11441.

8OCaml#10612. Transparent ascription is written (P :> S) in OCaml#10612, the opposite of the SML
convention.

https://github.com/ocaml/ocaml/issues/7818
https://github.com/ocaml/ocaml/pull/2051
https://github.com/ocaml/ocaml/pull/10435
https://github.com/ocaml/ocaml/pull/10612
https://github.com/ocaml/ocaml/issues/11441
https://github.com/ocaml/ocaml/pull/10612
https://github.com/ocaml/ocaml/pull/10612
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1 (* Interface definitions *)
2 module type Field = ...
3 module type VectorSpace = sig
4 module Scalar : Field
5 ... (** more fields *)
6 end
7

8 (* Basic data-structure *)
9 module Set(Y:...) = ...

10

11 (* Extension of a vector space
12 with additional features *)
13 module LinAlgebra(V:VectorSpace) =
14 struct
15 ...
16 module SSet = Set(V.Scalar)
17 ...
18 end

19 (* Special case of vector space
20 built directly from a field *)
21 module Make3D(K:Field) = (struct
22 module Scalar = K
23 ... (** built from K *)
24 end : sig
25 module Scalar : (= K < Field) ...
26 end)

27 (* Implementation of real numbers R *)
28 module Reals = ...
29

30 (* Vector space R3 with extensions *)
31 module Space3D =
32 LinAlgebra(Make3D(Reals))
33

34 (* Are sets of reals the same
35 as sets of scalars of R3 ? *)
36 Space3D.SSet.t =? Set(Reals).t

Figure 4: An example of code pattern where transparent signatures are necessary. On the
left-hand side, VectorSpace defines an interface for vector spaces which contains a sub-module
Scalar for the field of scalar numbers. The functor LinAlgebra (line 14) uses a vector space
to define linear algebra operations, one of them using sets of scalar numbers. At some other
point in the development (line 21), 3D vector spaces are built directly from any field K via
the functor Make3D. Its signature contains a transparent signature on its parameter K. Finally,
on line 32, the module Space3D implements linear algebra for the vector space R3. We want
the inner sets Space3D.SSet.t, and Set(Reals).t to be compatible. This requires the aliasing
information to be kept between the parameter and the body of the functor Make3D. Currently,
OCaml fails to share and identify the types Space3D.SSet.t and Set(Reals).t.
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type-checking.

Transparent signatures (= P < S) can be seen as a special case of the more general module
sharing mechanism of F-ing (Rossberg et al. [2014]) like P: we have could define (=P<S)≜(like (P : S))
(with a transparent ascription of P by S). This sharing mechanism relies on a general notion of
semantic paths which stand for any module expression that does not introduce new abstract
types whereas OCaml uses more restrictive syntactic paths. Therefore, module sharing sig-
natures with semantic paths could also play the role of transparent signatures. However, we
argue that semantic paths are too powerful for their own good. By injecting arbitrary module
expressions in signatures, it makes it hard for the user to know if two modules are equivalent.

As transparent signatures enable more sharing of identities in signatures of inferred mod-
ules, aliasing becomes a good static approximation of that equivalence.

1.3 A Key Challenge: the Signature Avoidance Problem

In this section, we present the signature avoidance problem, a key issue of ML module systems
that comes from the interaction between abstraction and projection. In Section 1.3.1, we
introduce the signature avoidance problem through examples. In Section 1.3.2, we discuss
possible strategies to handle it. We give some considerations for the design of an algorithm
that can be used to solve the avoidance problem, which we call anchoring. In Section 1.3.3, we
propose a restriction of anchoring in the presence of applicative functors for a better usability.
We conclude with some practical aspects in Section 1.3.4.

1.3.1 Introduction to the avoidance problem

At its core, signature avoidance originates from interaction of three mechanisms. First, type
abstraction creates new types that are only compatible with themselves (and their aliases).
Then, sharing abstract types between modules, which is essential for module interactions,
produces inter-module dependencies in signatures. Finally, projection (and other mechanisms)
allows the user to hide a type or module components, which can break such dependencies:
types can be removed from the scope while they are still being referenced. Sometimes, no
possible signature exists for a module in the source syntax; other times there are several
incomparable ones (no principal source signature). A detailed overview of the avoidance
problem can be found in Crary [2020].

In the literature, the nomenclature is not fully stabilized: sometimes the avoidance problem
refers to cases where no source signature exists, sometimes to the process of finding a signature
that avoids a certain type. In this thesis, we use signature avoidance or the signature avoidance
problem to refer to the challenge of finding a signature that avoids a certain type, if it exists.
The algorithm that actually finds such signature is called the anchoring algorithm.

Anonymous projection We start with an example that is not in valid OCaml syntax:

1 module M = (struct
2 type t = A of int | B
3 module X = struct
4 let x = A(42)
5 end
6 end).X

The module M is built by projecting only the submodule X, which exposes unsolvable depen-
dencies with a type t that has become unreachable. There is no way of writing a signature
for M that avoids t:

1 sig x : ? end
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OCaml disallows anonymous projections precisely to prevent this type of patterns.

Anonymous functor call However, OCaml allows anonymous functor call, which leads
to similar situations:

1 module M =
2 (functor (Y:sig type t end) → struct
3 let x : Y.t list = []
4 end)(struct type t = A | B end)
1 Error: This functor has type functor (Y : T) → sig val x : Y.t list end
2 The parameter cannot be eliminated in the result type.
3 Please bind the argument to a module identifier.

Here, the algebraic datatype of the anonymous argument cannot be referred and is yet neces-
sary for the resulting signature: there is not signature avoiding this type. The error message
suggests a solution: naming the module argument to make its type components available for
the rest of the program.

Anonymous open Finally, OCaml also offers anonymous open, a feature that is discussed
in Section 1.5.1. We give here an example of signature avoidance using open for completeness,
but it can be skipped by a reader unfamiliar with the feature:

1 module M = struct
2 open (struct type t end)
3 let x : t option = None
4 end
1 Error: The type t/4046 introduced by this open appears in the signature
2 Line 5, characters 6-7:
3 The value x has no valid type if t/4046 is hidden

The typechecker tries to remove the name t of the resulting signature, but it cannot: there is
no signature avoiding this type.

Overall, signature avoidance can appear as long as there are ways to hide abstract types
from the typing environment, creating dangling dependencies.

1.3.2 Strategies

There a three main strategies to handle the avoidance problem:

1. Preventing the loss of abstract types. For instance, naming all module expressions make
all abstract types always accessible and the avoidance problem disappears. However, it
greatly limits the usability of the module calculus and prevents a fine-grained manage-
ment of types: it becomes impossible to hide intermediary module constructions without
explicit ascriptions.

2. Trying to rewrite the signature to avoid the out-of-scope types. This might require deep
rewrites inside the signature, to abstract type components, as done by Crary [2020].
OCaml uses an incomplete (undocumented) heuristic that can lead to loss of type-
sharing : type equalities between in-scope types might be lost. We detail it below.

3. Extend the signature syntax to account for the existence of out-of-scope types, as done
in SML’90 Milner et al. [1997] and in Dreyer et al. [2003]; Russo [2004]; Rossberg et al.
[2014]; Harper and Stone [2000]. From a formalization point of view, the extension of
syntax forces a specification by elaboration, where signatures are translated in a more
expressive language, more or less distant from the source one.
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The rewriting heuristic of OCaml When a signature mentions an out-of-scope type,
say t for instance, OCaml uses the following heuristic:

1. If the type appears in a type field of the form type u = t that is in a strictly positive
position, the field is transformed into an abstract type field type u

2. If the type appears in a module type field, the whole module type field is transformed
into an abstract module type, which is actually a bug9 .

3. If the type appears in any other position (value field, non-strictly positive type field,
etc), a type-error is thrown.

Loss of type-sharing While simple, this heuristic has some surprising behavior. Let us
consider the following code:

1 module F = functor (Y:sig type t end) → struct type u = Y.t type v = Y.t end
2 module M = F(struct type t = A | B end)

Here, the signature of X mentions an out-of-scope type t that should be avoided. OCaml
make all type declarations that mention t abstract, giving the following signature 10:

1 module F : functor (Y:sig type t end) → sig type u = Y.t type v = Y.t end
2 module M : sig type u type v end (* OCaml *)

Here, there is a loss of type-sharing: the type u and v are no longer equal! It can lead to
errors latter in the program:

1 let f : M.u → M.v = fun x → x
1 Error: This expression has type M.u but an expression was expected of type M.v

Yet, a better signature was possible if instead of abstracting all type declarations mentioning t,
the typechecker would recognize u as an available in scope alias that can be used to replace t:

1 module M : sig type u type v = u end

Inside the body of the functor, Y.t and u refer to the same type, and using one or the
other in the definition of v should not change the result. Yet, writing type v = u instead
of type v = Y.t would change the signature inferred by OCaml: the avoidance resolution
heuristic would not rewrite a declaration that does not use out-of-scope types. Overall,
the resolution mechanism is quite brittle: the typechecker can lose type equalities, and this
depends on the choice of (equivalent) type aliases in the definitions.

+ P Type-preserving anchoring: all type equalities should be preserved: i.e., types
that are considered equal before a projection and that remain in scope should still be
considered equal after a projection. Type definitions should not be abstracted away
silently, but only by an explicit opaque ascription. Resolution of avoidance should not
depend on the choices of aliases in the definitions.

9Researching this behavior led us to uncover this bug and open the issue OCaml#10491
10In OCaml 4.14, the -short-path option can give a misleading output, writing the following signature

for the functor: module F : functor (Y:sig type t end) → sig type u = Y.t type v = u end.
It is misleading, because internally the type equality is type v = Y.t and not type v = u. Therefore the
avoidance algorithm will in fact rewrite the type field, making it abstract type v in the resulting signature
after the application.

https://github.com/ocaml/ocaml/issues/10491
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1.3.3 Avoidance with applicative functors

Introducing applicative functors in the mix adds a new layer of complexity. While it is possible
to define a type-preserving resolution of avoidance that supports applicative functors, we
believe that it should be restricted to rely on module equivalence. To support that point, we
present the difficulty of designing such resolution through examples, but, more importantly,
we show why we believe that it would be impractical.

Change of domain The abstract type of applicative functors can be thought of as type
functions over a certain domain: the signature of the parameter of the functor.

1 (struct
2 module F (Y:S) = struct type t end
3 module R = struct
4 module F1 (Y:S1) = struct type t = F(Y).t end
5 module F2 (Y:S2) = struct type t = F(Y).t end
6 module X : S’ = ...
7 type t = F(X).t
8 end
9 end).R

Using the abstraction heuristic of OCaml, we would get:

1 sig
2 module F1 (Y:S1) : sig type t end
3 module F2 (Y:S2) : sig type t end
4 module X : S’
5 type t
6 end

All type equalities have been lost, while some could be kept! To preserve type-sharing, one
might be tempted to abstract the type-definition inside F1 and rewrite all paths using F with F1
instead. However, it might not be possible, as F and F1 do not have the same parameter
signature (resp. S and S1). To check if it correct, one would have to browse the rest of the
signature to find if F is only “used” on a subset of its domain, which makes the resolution of
avoidance non-local. If S2 and S’ happen to be subtypes of S1, then the following signature
is correct:

1 (* if S2 < S1 and S’ < S1 *)
2 sig
3 module F1 (Y:S1) : sig type t end
4 module F2 (Y:S2) : sig type t = F1(Y).t end
5 module X : S’
6 type t = F(X).t
7 end

If, instead, S1 and S2 are incompatible, i.e., no signature is subtype of both, then it would
not loose type-sharing to abstract the type fields inside the body of both functors:

1 (* if there is no S such that S < S1 and S < S2 *)
2 sig
3 module F1 (Y:S1) : sig type t end
4 module F2 (Y:S2) : sig type t = F1(Y).t end
5 module X : S’
6 type t = F(X).t
7 end

Change of arity In addition to the domain, the arity of abstract types could be changed.
We modify the previous example by adding a dummy parameter to F1:
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1 (struct
2 module F (Y:S) = struct type t end
3 module R = struct
4 module F1 (Y:S1) (Arg: sig end) = struct type t = F(Y).t end
5 module X : S’ = ...
6 module A = struct end
7 type t = F(X).t
8 end
9 end).R

Again, the abstraction heuristic of OCaml would abstract all type fields mentioning F. How-
ever, in order to use F1 in place of F, we would have to chose a second argument to the
application. This choice would be completely arbitrary and very surprising to the user:

1 sig
2 module F1 (Y:S1) (Arg: sig end) : sig type t end
3 module X : S’
4 module A : sig end
5 type t = F1(X)(A).t
6 end

No invention of functor application Both the examples above constitute cases where
the typechecker would try to solve signature avoidance by creating new functor applications
“out of thin air”, just to refer to types that have lost their original path. While sound, this
would be very surprising to the user, if not misleading. Let us consider this final example,
where the projection renders the List functor inaccessible.

1 module M = (struct
2 module type T = ...
3 module Lists (Y: T) : sig type t (* other fields ... *) end = (* ... *)
4 module R = struct
5 module Sets (E: T) = struct
6 (* ... *)
7 module ToList = struct
8 type elist = Lists(E).t
9 (* extraction from sets to lists ... *)

10 end
11 end
12 module X = (* ... *)
13 type t = Lists(X)
14 end).R

An advanced anchoring algorithm could find the following signature:

1 module M : sig
2 module Sets(E:T) : sig
3 (* ... *)
4 module ToList : sig
5 type elist
6 (* .. *)
7 end
8 end
9 module X : (* ... *)

10 type t = Sets(X).ToList.t
11 end

Here, it suggests the computation of the module Sets(X), while this application was no present
in the original code. We take the stance that such rewrites, while doable, would be confusing
for the user and very hard to predict.
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Restricting anchoring Overall, types inside functor applications cannot be considered
“independtly” of the functor they were defined in. So if a functor F is lost by projection,
when should anchoring not throw a type error ? Here, we propose to answer: if a functor F’
equivalent to F is still in scope! We reuse the notion of module equivalence explored in
Section 1.2.4: F’ must have a transparent signature of the form (= F < ...). This gives a
simple and predictable criterion, which we propose for the design of anchoring:

+ P Resolution of avoidance based on module equivalence: a path F(X).t can
avoid F if a module equivalent to F is still in scope, and can avoid X if a module equivalent
to X is still in scope.

We believe that the simplicity of this criterion is a key design choice for usability: it
reduces the problem of higher-order avoidance to a first-order problem at the module level.

1.3.4 Signature avoidance in practice

Naming modules OCaml users usually get around signature avoidance errors by explic-
itly naming modules before using them, which adds always-accessible type definitions. The
module syntax of OCaml actually encourages this approach by limiting the places where
inlined, anonymous modules can be used. In particular, projection on an anonymous module
is forbidden. It is however cumbersome, as it prevents some concise code patterns and forces
to expose type definitions.

Interface files Moreover, in practice, OCaml developers often have interface files (with the
extension .mli) that behave as a file-wide ascription. This means that signature avoidance
is actually a problem that occurs during typechecking of intermediary module expressions,
before the final ascription forces a given signature. Therefore, we advocate for a mechanism
that does not fail when sub-expressions cause signature avoidance:

+ C Delayed avoidance: the module system should support signatures with out-of-
scope types for intermediary module expressions

1.4 Module-level abstraction

In this section we present module-level abstraction. Just as signature can contain abstract type
declarations of the form type t (without a definition), they can contain abstract module-type
declarations, of the form module type T (without a definition). Just as core-level abstraction,
module-level abstraction can be used for ascription, to hide definitions, or with functors, for
polymorphism.

Abstract module types are both one of the most esoteric, less understood, and under-
appreciated features of the OCaml module system. They have their own set of challenges.

1.4.1 Abstract signatures

We introduce abstract signatures via two on-going examples. Fundamentally, they will not
be surprising to readers used to rely on abstraction to protect invariants and factor out code.
Their specificity lies in the fact that there are at the module level, and therefore require
projects with a certain size and a strong emphasis on modularity to be justified.
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Module sealing

Let’s consider the following scenario. Two modules providing an implementation of UDP
( UDP1 and UDP2) are developed with different design trade-offs. They both implement a
signature with basic send and receive operations. Then, functors are added as layers on top:
taking a udp library as input, they return another udp library as an output.

• Reliable adds sequence numbers to the packets and re-sends missing packets;
• CongestionControl tracks the rate of missing packets to adapt the throughput to network

congestion situations;
• Encryption encrypts the content of all messages.

The resulting signature might look something like:

1 module type UDPLib = sig
2 module type UDP = sig
3 val send : string → unit
4 val get : unit → string
5 (* ... *)
6 end
7

8 module UDP1 : UDP
9 module UDP2 : UDP

10

11 module Reliable : UDP → UDP
12 module CongestionControl : UDP → UDP
13 module Encryption : UDP → UDP
14 end

However, a project might need different combinations of the basic libraries and functors,
while requiring that all combinations use encryption. To enforce this, the solution is to
use the module-level sealing of abstract signatures. In practice, the signature of the whole
library containing implementations and functors UDPLib (typically, its .mli file) is rewritten
to abstract the UDP interface, except for the output of the Encryption functor.

1 module type UDPLib = sig
2 module type UDP (* abstract! *)
3

4 module UDP1 : UDP
5 module UDP2 : UDP
6

7 module Reliable : UDP → UDP
8 module CongestionControl : UDP → UDP
9 module Encryption : UDP →

10 sig
11 val send : string → unit
12 val get : unit → string
13 (* ... *)
14 end
15 end

Just as type abstraction, signature abstraction can be used to enforce certain code pat-
terns: users of UDPLib will only be able to use the module after calling the Encryption functor,
and yet they have the freedom to choose between different implementations and features:

1 module UDPKeyHandshake = Encryption(Reliable(UDP1))
2 module UDPVideoStream = Encryption(CongestionControl(UDP2))
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Module polymorphism

Another use is to introduce polymorphism at the module level. Just as polymorphic func-
tions can be used to factor code, module-level polymorphic functors can be used to factor
module expressions. If a code happens to often feature functor applications of the form
Hashtbl.Make(F(X)) or Set.Make(F(X)), one can define the MakeApply functor as follows:

1 module type Type = sig module type T end
2 module MakeApply
3 (A:Type) (X: A.T)
4 (B:Type) (F: A.T → B.T)
5 (C:Type) (H: sig module Make : B.T → C.T end) = H.Make(F(X))

Downstream the code is rewritten using MakeApply. Right now, the verbosity of such ex-
ample would probably be a deal-breaker. We address this aspect at the end . Ignoring the ver-
bosity, this can be useful for maintenance: by channeling all applications through MakeApply,
only one place needs to be updated if the arity or order of arguments is changed. Similarly,
if several functors expect a constant argument containing – for instance – global variables,
a ApplyGv functor can be defined to always provide the right second argument, which can even
latter be hidden away to the user of ApplyGv:

1 (* Constant argument *)
2 module Gv : GlobalVars
3 module ApplyGv (Y : sig module type A module type B end)
4 (F : Y.A → GlobalVars → Y.B)(X : Y.A) = F(X)(Gv)

Downstream, code featuring F(X)(GlobalVars) is rewritten into ApplyGv(...)(F)(X). Then,
the programmer can hide the GlobalVars module while letting users use ApplyGv, ensuring that
global variables are not modified in uncontrolled ways by certain part of the program.

Finally, polymorphism can also be used by a developer to prevent unwanted dependencies
on implementation details. If the body of a functor uses an argument with a submodule X,
but actually does not depend on the content of S, abstracting it is a “good practice”:

1 module F (Arg : sig ... module X : S ... end) =
2 struct (* the code can depend on the content of S *) end
3

4 module F’ (Y: sig module type S end)
5 (Arg : sig ... module X : Y.S ... end ) =
6 struct (* the code cannot depend on the content of S *) end

1.4.2 Challenges of abstract signatures

In this subsection we explore the issues posed by abstract signatures as currently implemented
in OCaml.

Variant interpretation

The challenge for understanding (and implementing) abstract signatures lies more in the
meaning of the module-level polymorphism that they offer than the module level sealing, the
latter being pretty straightforward. More specifically, the crux lies in the meaning of the
instantiation of an abstract module-type variable A by some other signature S, that happens
when a polymorphic functor is applied. The substitution-based intuition (“replacing all oc-
curences of A by S”) has some surprising behaviors when the signature S contains abstract
types, as they have a variant interpretation: an abstract type in positive position indicates
sealing, while an abstract type in negative position indicates polymorphism.

Therefore, when instantiating an abstract signature with a signature that has abstract
fields, the user must be aware of this, and mentally infer the meaning of the resulting signature.
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To illustrate how it can be confusing, let’s revisit the first motivating example and let’s assume
that the developer actually want to expose part of the interface of the raw UDP libraries. One
might be tempted to instantiate UDP with something along the following lines11:

1 module type UDPLib_expose = sig
2 include UDPLib with module type UDP =
3 sig
4 module type UNSAFE
5 module Unsafe : UNSAFE (* this part remains abstract *)
6 module Safe : sig ... end (* this part is exposed *)
7 end
8 end
1 module type UDPLib_expose = sig
2 module type UDP =
3 sig
4 module type UNSAFE
5 module Unsafe : UNSAFE
6 module Safe : sig ... end
7 end
8 module UDP1 : UDP
9 module UDP2 : UDP

10 module Reliable : UDP → UDP
11 module CongestionControl : UDP → UDP
12 module Encryption : UDP → sig val send : string → unit (* ... *) end
13 end

However, the variant interpretation of this signature in the negative positions produces
a counter-intuitive result. For instance, if we expand the signature of the argument for the
functor ‘Reliable‘ (for instance) we see:

1 module Reliable :
2 sig
3 module type UNSAFE
4 module Unsafe : UNSAFE
5 module Safe : sig ... end
6 end → UDP

This means that the functor actually has to be polymorphic in the underlying implemen-
tation of UNSAFE, rather than using the internal details, which has the opposite meaning as
before. If the user wants to hide a shared unsafe core, accessible to the functor when they
were defined by then abstracted away, the following pattern may be used instead:

1 module type UDPLib_expose’ = sig
2 module type UNSAFE
3 include UDPLib with module type UDP = sig
4 module Unsafe : UNSAFE
5 module Safe : sig ... end
6 end
7 end

Doing so, the instantiated signature does not contain abstract fields and therefore its
variant reinterpretation will not introduce unwanted polymorphism.

Impredicativity

Abstract module types are impredicative: a signature containing an abstract signature can
be instantiated by itself. One can trick the subtyping algorithm into an infinite loop of

11We use the construct with module type for the instantiation, which is introduced in Section 1.6.2.
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instantiating an abstract signature by itself, as shown by Rosseberg12, adapting an example
from Harper and Lillibridge [1994]:

1 module type T = sig
2 module type A
3 module F : A → sig end
4 end
5

6 module type I = sig
7 module type A
8 module F : (T with module type A = A) → sig end
9 end

10

11 module type J = (T with module type A = I)
12

13 module Loop (X:J) = (X:I)

During the typechecking of the functor Loop, a subtyping check is made between J and I, i.e.,
between T[A <- I] and I. This leads to instantiating A by I in the right-hand side. When
comparing the two functor declarations, the subtyping between the two arguments is again
(by contravariance) the subtyping between T[A <- I] and I: the typechecker is thrown in a
loop.

Impredicativity also allows type-checking of (non-terminating) programs with an absurd
type, as shown by the encoding of the Girard’s paradox Leo White 13.

Module-level-sharing

Abstract signatures require module-level sharing, like the transparent signatures presented
in Section 1.2.4. To see why, let us consider the following two functors:

1 module F1 (Y: sig module type A module X : A end) = Y.X
2 module F2 (Y: sig module type A module X : A end) = (Y.X : Y.A)
1 (* Currently, both are given the same type: *)
2 module F1 (Y: sig module type A module X : A end) : Y.A
3 module F2 (Y: sig module type A module X : A end) : Y.A

Here, we would expect the body of F1 to keep type-sharing with its argument, while the F2
uses an opaque ascription and should indeed loose type-sharing. With transparent signatures,
we would get :

1 (* Currently, both are given the same type: *)
2 module F1 (Y: sig module type A module X : A end) : (= Y.X < Y.A)
3 module F2 (Y: sig module type A module X : A end) : Y.A

Other issues

The implementation of abstract signatures has a number of issues besides the theoreti-
cal ones mentioned above. We uncovered some during our work on this topic, notably:
OCaml#12204, OCaml#10491.

1.4.3 Simple abstract signatures

In this section we present a solution for fixing the issues of the current approach, while keeping
the core of the functionality. The main criticism we make of the OCaml approach is that it
is actually too expressive for its own good. Having impredicative instantiation with variant

12See https://sympa.inria.fr/sympa/arc/caml-list/1999-07/msg00027.html
13See https://github.com/lpw25/girards-paradox/tree/master

https://github.com/ocaml/ocaml/issues/12204
https://github.com/ocaml/ocaml/issues/10491
https://sympa.inria.fr/sympa/arc/caml-list/1999-07/msg00027.html
https://github.com/lpw25/girards-paradox/tree/master
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reinterpretation is hard to track for the user and interacts in very subtle ways with other
features of the module system, slowing down its development—and breaking its theoretical
properties. To address this, we take the opposite stance and propose to make the system
actually predicative: we restrict the set of signatures that can be used to instantiate an abstract
signature. This also indirectly addresses the complexity of the variant reinterpretation.

+ M Predicative abstract signatures: we propose to restrict the instantiation of ab-
stract signatures by simple signatures: signatures that may contain abstract type fields
but no abstract module-type fields.

Expressivity One might wonder how restrictive is this proposal. Specifically, if we consider
a simple polymorphic functor as:

1 module Apply (Y : sig module type A end) (F : Y.A → Y.A)(X : Y.A) = F(X)

The following partial application would be rejected:

1 (* Rejected as A would be instantiated by
2 ‘sig module type B module X : B → B end‘ *)
3 module Apply’ = Apply(struct
4 module type A = sig module type B module X : B → B end
5 end)

However, this could be circumvented by eta-expanding, thus expliciting module type param-
eters, and instantiating only a simple signature:

1 (* Accepted as A is instantiated by a signature with no abstract fields *)
2 module Apply’’ = functor (Y:sig module type B end) →
3 Apply(struct
4 module type A = sig module type B = Y.B module X : B → B end
5 end)

Module-type arguments for functors A key aspect of abstract module types that re-
duces their usability is the fact that signatures have to be given as part of a module. Instead,
we propose module-type arguments for functors. In practice, they could be indicated by using
brackets instead of parenthesis, and interleaved with normal module arguments, as in this
example:

1 (* At definition *)
2 module MakeApply
3 [A] (X:A)
4 [B] (F: A → B)
5 [C] (H : sig module Make : B → C end)
6 = H.Make(F(X))
7

8 module ApplyGv
9 [A] [B] (F:A → GlobalVars → B) (X:A)

10 = F(X)(Gv)
11

12 (* At the call site *)
13 module M1 = MakeApply
14 [T] (X)
15 [Hashtbl.HashedType] (F)
16 [Hashtbl.S] (Hashtbl)
17

18 module M2 = ApplyGv [A] [B] (F) (X)
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Technically, this is not just syntactic sugar for anonymous parameters due to the fact that
OCaml relies on names for applicativity of functors.

+ C Module-type arguments for functors

Following up on the previous point, usability of abstract signatures could even be improved
with some form of inference at call sites. Further work is needed to understand to what extend
this could be done.

1.5 Composition

Composition refers to the ways different modules can be combined together. In this section
we propose a taxonomy to classify the forms of composition and briefly discuss the associated
features. Unlike previous sections, we do not summarize the features we add to our wish-list
at the end of each subsection, but discuss them all at the end.

Forms of composition Let us assume that we want to compose two modules, M1 and M2.
We propose the following criteria:

1. Open vs Closed: If we know the modules that are composed, here M1 and M2, the com-
position is closed. If instead, we want to compose M2 with a module that is not chosen
yet, we call the composition open. In such case, the user has to provide the signature
of what is expected of the other module (M1). Open composition is associated with a
resolution where the module M1 is actually chosen14. This resolution can be made at
another point than the definition of M2, and it allows M1 and M2 to be compiled sepa-
rately. It also allows to create several instances by composing M2 with different modules.
Overall, open composition has some flexibility but requires a signature annotation, and
therefore, forces a fixed view of the one module that is resolved.

2. Sequential vs Recursive: If M2 depends (either for value definitions or type defini-
tions) on M1 but not the other way around, we can compose them in a sequence: first M1
then M2. If the dependency is mutual, i.e., M1 depends on M2 and M2 depends on M1, we
need a recursive composition. Expressivity-wise, sequential composition is a sub-case
of recursive composition, which is more general. However, recursive composition also
has theoretical and practical challenges that we explore in Section 1.5.2, which explains
why the simplicity of sequential composition is still appealing for users and language
designers.

3. Hierarchical vs Flat: When M1 and M2 are structures (not functors), another distinc-
tion arises. After the composition of M1 and M2, if the content of both are in separate
namespaces, the composition is called hierarchical : the namespace hierarchy keeps a
trace of the composition. If instead, the content of the two modules are merged in the
same namespace, the composition is called flat. Flat composition can create clashes of
namespaces, i.e., shadowing. Overall, flat composition is more general than hierarchical,
as the desired name-space hierarchy can always be explicitly added before composition,
but at the cost of dealing with shadowing.

We sum up the associated features in Figure 5. As a nomenclature convention when de-
scribing a form of composition, we omit “closed”, “sequential” and “hierarchical”, which are
(traditionally) the default choice. Therefore, “flat composition” refers to closed -sequential -flat

14At this point, a subtyping check is made between what was expected of M1 and what is actually provided.
M1 is then seen through either an opaque or transparent ascription, depending on the features. For functor
calls, the effective ascription is transparent.
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Sequential Recursive
Hierarchical Flat Hierarchical Flat

Closed submodule include/open recursive modules

Open creation functor mixin moduleb

resolution application include functora composition/instantiation b

Figure 5: Summary of the language constructions for composition. The holes indicate a form
of composition for which we don’t know a corresponding construction in any ML dialects.
aExperimental feature present in an extension of OCaml
bImplemented in MixML Rossberg and Dreyer [2013], an experimental language based on mixin
composition

composition, while “open recursive composition” refers to open-recursive-hierarchical compo-
sition.

1.5.1 Hierarchical and flat composition

Hierarchical

The most basic form of composition is closed-hierarchical-composition, which is provided by
module bindings. The user can combine modules, but they remain in different name-spaces,
with different prefixes, as illustrated by the following code:

1 module X1 = struct let x = 42 end
2 module X2 = struct let x = 43 end
3 module Z = struct module X = X1 module X’ = X2 end
1 module X1 = struct let x = 42 end
2 module X2 = struct let x = 43 end
3 module Z : sig
4 module X : sig val x : int end
5 module X’ : sig val x : int end
6 end

The module Z is the result of the composition of X1 and X2. The content of X1 are in a
hierarchically different namespace from the content of X2, with a different prefix: X1.x vs X2.x.

Open-hierarchical-composition is provided by functors. The creation is definition of the
functor, that depends on a yet-unresolved module parameter. At the point of functor appli-
cation, the module is resolved, as illustrated by the following code:

1 (* Creation *)
2 module F (Y : sig val x : int end) = struct let z = Y.x + 42 end
3 module X = struct let x = 1 end
4 module X’ = struct let x = 2 let y = 3 end
5 (* Resolution *)
6 module Z = F(X)
7 module Z’ = F(X’)
1 module F : functor (Y : sig val x : int end) → sig val z : int end
2 module X : sig val x : int end
3 module X’ : sig val x : int val y : int end
4

5 module Z : sig val z : int end
6 module Z’ : sig val z : int end

The creation of F, X and X’ can be in different files and in any order. The functor can be
used several times, creating different instances Z and Z’. Inside the body of the functor, the
content of the parameter is hierarchically separated (prefixed by Y). It is not re-exported by
default.
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Flat composition

There are two main language constructs for closed-flat-composition, that we detail below.

Include The first construct is include. It takes all the fields of a structure and put them,
at the same level, inside the current structure. It can be used for modules expressions:

1 module X1 = struct let x1 = 42 end
2 module X2 = struct let x2 = 43 end
3 module Z = struct include X1 include X2 let z = x1 + x2 end
1 module X1 = sig val x1 : int end
2 module X2 = sig val x2 : int end
3 module Z : sig val x1 : int val x2 : int val x : int end

It can be used with anonymous modules, as long as they have a structural signature. It is also
available for combining signatures. As flat composition merges two name-spaces, there can
be shadowing between the two. In OCaml, shadowing via an include statement is disallowed
and produces a typechecking error. A typical use-case for include is to extend a module with
additional fields.

Open The second construct for flat composition is a variant of the include statement where
the imported bindings are made available in the current structure but not re-exported: open.

1 module X = struct let x = 42 end
2 module Y = struct open X let y = x + 1 end
1 module X : sig val x : int end
2 module Y : sig val y : int end (* no field x *)

While the restricted open P statement (restricted to paths) is straightforward, the generalized
statement open M Li and Yallop [2017] (where M is any module expression) is more subtle:
it may create signature avoidance situations by opening abstract type declarations that are
not exported and yet appear in the signature.. For instance, the following program fails to
typecheck:

1 module X = struct
2 open (struct type t = A | B end)
3 let x : t = A
4 end
1 Error: The type t/1676 introduced by this open appears in the signature
2 Line 3, characters 6-7:
3 The value x has no valid type if t/1676 is hidden

As for include, opening a module can lead to shadowing of fields. While it is again disallowed
by default in OCaml, the language also offers a variant open! that allows shadowing.

Open-flat composition

There is a missing construct for open-flat composition. The closest we can do in OCaml
would be to combine a functor with an include statement, as in:

1 module type S = sig val x : int end
2 module F = functor (Y:S) → struct include Y let f = x + x end
3 module X = struct let x = 42 let y = 41 end
4 module Z = F(X)
1 module Z : sig val x : int (* from X *) val f : int (* from F *) end

Technically, it is an open flat composition, as the content of X and F are indeed merged in the
same namespace at the resolution point. However, this is not satisfactory, as X is restricted
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to the fixed view of S: F can be used only to extend it beyond the field of S, other extra-fields
are lost (here, the field y of X is not present in Z). Due considerations of compilation-schemes
(discussed in Section 1.2.4), this implicit (transparent) ascription at functor call could not
be removed. Alternatively, we can use a temporary structure and flat-compose the argument
together with the result of functor application, as in:

1 module Z = struct
2 open (struct module Temp = struct let x = 42 let y = 41 end end)
3 include Temp
4 include F(Temp)
5 end
1 module Z : sig val x : int val y : int (* from Temp *) val f : int (* from F *) end

Again, this pattern is not fully satisfactory, as it (1) requires to use a dummy name Temp and
(2) does not compose well: every include of a functor call would require a new temporary
structure, with the verbose pattern of line 3.

Include functor A proposal15 as been made for OCaml (and is already implemented in
JaneStreet’s work of OCaml) for a new feature called include functor, aimed a solving
this problem. It provides a way to do the resolution of open-flat composition, combining a
structure and the result of a functor call:

1 module Z = struct
2 let x = 42
3 let y = 41
4 include functor F (* = include F(current structure up to this point) *)
5 end

Using the combined keywords include functor it allows to flat-compose the result of applying F
to the current structure being built.

1.5.2 Recursive composition

Sequential composition does not allow the user to define modules that have mutual depen-
dencies. This is a strong limitation of modularity: while the core-language provides mutually
recursive types and values, their definitions cannot cross module boundaries. As stated by
Russo [2001]: “This limitation compromises modular programming, forcing the programmer
to merge conceptually (i.e. architecturally) distinct modules.” To overcome this limitation,
a notion of recursive modules (for closed composition) and mixin modules (for open com-
position) were introduced, allowing for the definition of separate modules that have mutual
dependencies. This topic has been heavily researched over the year, by Rossberg and Dreyer
[2013]; Im et al. [2011]; Montagu and Rémy [2009]; Dreyer [2007a,b]; Nakata and Garrigue
[2006]; Russo [2001]; Crary et al. [1999]; Jaakkola [2020] (to name a few). As is was not at
the heart of this thesis, we only briefly present existing features, challenges, or research ideas
for future work. We start with an example.

Recursive modules in OCaml OCaml offers a notion of recursive module binding, intro-
duced by the keywords module rec. Each recursive module must be given an explicit signature.
The pattern is therefore :

1 module rec X1 : S1 = M1
2 and X2 : S2 = M2
3 ...
4 and Xn : Sn = Mn

15See RFC at https://github.com/ccasin/RFCs/blob/include-functor/rfcs/include_functor.md

https://github.com/ccasin/RFCs/blob/include-functor/rfcs/include_functor.md
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The result of typechecking is a recursive module declaration, of the form:

1 module rec X1 : S1
2 and X2 : S2
3 ...
4 and Xn : Sn

A classical use-case for recursive modules is when a type definition relies on another type
definition that is provided by a functor call on the current structure. An example, adapted
from Nakata and Garrigue [2006], is the following:

1 module rec Tree :
2 sig type t = L | N of TreeSet.t val compare : t → t → int end =
3 struct
4 (* Leafs or sets of sub-trees *)
5 type t = L | N of TreeSet.t
6 let compare (t1: t) (t2 : t) = match (t1, t2) with
7 | (Leaf, Leaf) → 0
8 | (Node(_), Leaf) → 1
9 | (Leaf, Node(_)) → -1

10 | (Node(s1), Node(s2)) → TreeSet.compare s1 s2
11 end
12 and TreeSet : (Set.S with type elt = Tree.t) = Set.Make(Tree)
1 module rec Tree : sig type t = L | N of TreeSet.t val compare : t → t → int end
2 and TreeSet : sig type t type elt = Tree.t val compare : t → t → int ... end

Here, the definition of Tree.t at line (3) relies on sets of itself at each node TreeSet.t, where
sets are provided by the Set functor. Both the type definitions and value bindings are mutually
recursive between Tree and TreeSet.

Initialization of recursive structures

1 module rec X : sig val x : unit → int end =
2 struct let x () = Y.x + 1 end
3 and Y : sig val y : int end =
4 struct let y = X.x () + 1 end
1 Fatal error: exception Undefined_recursive_module

Typechecking recursive signatures in the presence of applicative functors

1 module F = functor (Y: sig type t = int end) → struct type u end
2

3 module rec X : sig type t = int end =
4 struct type t = int end
5 and Y : sig type u = F(X).t end =
6 struct type u = F(X).t end
1 Error: Modules do not match: sig type t = X.t end is not included in
2 sig type t = int end
3 Type declarations do not match:
4 type t = X.t
5 is not included in
6 type t = int
7 The type t is not equal to the type int
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Typechecking recursive structures

1.5.3 Open recursion and mixins modules

1.6 Other features

In this section, we briefly present the remaining features that have not been covered yet.
We start with the interaction between the core and module language in Section 1.6.1. In
Section 1.6.2, we discuss the features for signature manipulation. In Section 1.6.4, we propose
a new feature of protected types to provide more flexible abstraction barriers.

1.6.1 Core and module language interactions

The separation between the core and module languages makes modules second-class citizens:
they cannot be handled directly by core-language expressions. We present some features
designed to facilitate interactions between the two language layers.

Local modules The stratification prevents interleaving module and value definitions. OCaml
features a local module construct that allows to define a module within a value definition, using
the let module keyword:

1 let module M = struct let y = 42 + x end in
2 M.y + x

First-class modules Russo [2000]; Dreyer et al. [2003]; Rossberg et al. [2014]; Rossberg
[2006]

Modular explicits/implicits

1ML

1.6.2 Handling signatures

As the module language becomes more and more expressive, the signature language must also
be enriched to allow for a fine grained control of interfaces. The two main

• Substitutions S with type t = int

• Destructive substitution S with type t := int

• Other stuff of Norman Ramsey

1.6.3 Interacting with signature inference

• Using inference module type of and generation of .mli files

• Controlling inference from the code: local defs and local -abs def

1.6.4 Flexible abstraction barriers

Protected types

1.7 Other techniques

OOP Typeclasses Files Scala
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1.8 Summary of features



Chapter 2

The ML source system

In this short technical chapter we present our OCaml-like language that we study in the rest
of this thesis. In the rest of this thesis, we refer to it as the “source” language. We discuss the
syntax, some syntactic mechanisms, and the semantics of the language in this chapter, while
we present two type systems for this language in the next two chapter (Chapter 3 and ??).

Overview In Section 2.1, we present the syntax of the grammar and we discuss technical
choices, syntactic sugar and other practical aspects. In Section 2.2 we briefly give an type-
erasing semantics.
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Paths and Prefixes
P ::= Q.X (Module)

| Y (Module Parameter)
| P (P ) (Applicative application)

Q ::= A | P (Prefix)

Identifiers
I ::= x (Variable)

| t (Type)
| X (Module)
| T (Module Type)
| Y (Functor Parameter)

Module Expressions
M ::= structA B end (Structure)

| P (Path)
| (Y : S) → M (Applicative functor)
| () → M (Generative functor)
| P () (Generative application)
| M.X (Anonymous projection)
| (P : S) (Ascription)

Bindings
B ::= letx = e (Value)

| type t = u (Type)
| moduleX = M (Module)
| module type T = S (Module type)

Signatures
S ::= sigA D end (Structural signature)

| (= P < S) (Transparent signature)
| (Y : S) → S (Applicative functor)
| () → S (Generative functor)
| Q.T (Module type)

Declarations
D ::= valx : u (Value)

| type t = u (Type)
| moduleX : S (Module)
| module type T = S (Module type)

Core language expressions
e ::= . . . (Other constructs)

| Q.x (Qualified value)

Core language types
u ::= . . . (Other constructs)

| Q.t (Qualified type)

Figure 6: Syntax of our OCaml-like language

2.1 Syntax

The source grammar is given on Figure 6, and discussed below. The language is the combina-
tion of three main parts: paths and identifiers, module and signatures and the core language.
We start with some minor technical choices:

• Fonts: module-related meta-variables use typewriter uppercase letters, M, S, etc., while
lowercase letters are used for expressions and types of the core language. Lists are
written with an overhead bar: D is a list of D. Identifiers I and paths P use a standard
(mathematical) font.

• Structures vs components: we separate declarations D from signatures S and, re-
spectively, bindings B from module expressions M. In the literature, declarations and
signatures (and bindings and modules) are sometimes merged in the same syntactic
category.

• Functor parameters Y are α-convertible, i.e., can be freely renamed. The other
identifiers (X, T , x and t) are not, as they play the role of both internal and external
names.

Self-references In order to simplify the treatment of scoping and shadowing, we introduce
self-references, ranged over by letter A, in both structures and signatures. They are used to
refer to the current object; their binding occurrence appears as a subscript to the structure
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or signature they belong to (structA . . . end, sigA . . . end). They are α-convertible. Im-
portantly, they do not serve as a way to define recursive structures or do forward
references. They only serve as structures and signatures are dependent record and fields can
refer previously defined ones. They are not present in OCaml and should be thought of
as being added by a first pass before typing. We explain how they help treat shadowing in
Section 2.1.1.

Prefixes In order to have a uniform treatment of access to local and non-local variables, we
use prefixes, written with the letter Q, to range over either a path P or a self reference A.

Abstract types We use a trick to represent abstract type fields: they are defined as types
pointing to themselves, of the form type t = A.t where A is the self-reference of the current
structure (and often grayed out for readability). This is only a way to removing the need to
distinguish between abstract and concrete type fields in the syntax.

Core language We leave abstract a core language of expressions e and types u. This
language can be thought of as ML, but could very well contain with exotic features. We only
extend the language of terms with qualified values Q.x, that are values bound by the module
level, and the language of types with qualified types Q.t, that are types bound by the module
level. These are the only ways for the core level to access the module level.

Functors As in OCaml, we syntactically distinguish applicative and generative functors:
generative functors take a special unit argument () as input. The unit argument () is not the
same as an empty structure. We find the effect-suggesting syntax of taking a unit argument
fitting, as calling a generative functor can indeed produce effects. Our grammar features
unary applicative functors and nullary generative functors. A unary generative functor can
be obtained as an applicative functor returning a generative one via the currying notation:

(Y : S) () → M ≜ (Y : S) → () → M

While n-ary applicative functors are straightforward, one might wonder if n-ary generative
functors require a unit argument between every parameter. Actually, the () acts as a generative
barrier and can be placed to control the sharing between partial applications:

(Y1 : S1)(Y2 : S2)() →M

is fully generative (every instance is new), while

(Y1 : S1)()(Y2 : S2) →M

is generative with regard to the first argument and applicative with regard to the second one.

Projectibility Choosing (1) whether projection is allowed on any module expression or
only on a restricted subset, and (2) how the core language can refer to values and types of
modules is an important design choice in ML systems, coined projectibility by Dreyer et al.
[2003]. Contrary to F-ing (Rossberg et al. [2014]), but following Leroy [1995] and Russo [2004]
(and others), we chose to use a syntactic notion of path.

• We allow projection on any module expression, but we restrict functor applications and
ascriptions to paths. OCaml does the opposite, mainly to prevent code patterns prone
to triggering signature avoidance. Our choice is more general, as we can define a let
construct for modules using the following syntactic sugar:

let X = M in M′ ≜ (structA module X = M module Res = M′ end).Res



46 CHAPTER 2. THE ML SOURCE SYSTEM

Using this construct, we easily get functor application and ascription on arbitrary mod-
ule expressions:

M(M′) ≜ let F = M in let X = M′ in F (X)

M() ≜ let G = M in G()

(M : S) ≜ let X = M in (X : S)

The reverse encoding of projection as an anonymous functor call requires an explicit
signature annotation on the argument and thus cannot be seen as syntactic sugar.

• A qualified access inside a generative functor application, of the form G().t, is syntacti-
cally ill-formed, as paths do not contain the unit argument (). By contrast, a qualified
access inside an applicative functor application F (X).t is permitted.

• A qualified access inside a module type, which would be of the form Q.T.t, is syntacti-
cally ill-formed, as paths do not contain module type identifiers T .

• We only provide opaque ascription in module expressions, as concrete ascription is given
by the following syntactic sugar: (P < S) ≜ (P : (= P < S))

As both path and module expressions feature a projection dot, the grammar is slightly am-
biguous. However, this is not a problem as we see paths as a subset of module expressions.
In particular, we only consider the projection dot of module expressions in the typing rules.

Transparent ascription Transparent ascription as a module expression, as available in
SML, can be encoded using either a normal ascription with a transparent signature, or as a
anonymous functor call:

(M < S) ≜ let X = M in (X : (= X < S))

or (M < S) ≜ let F = ((Y : S) → Y ) in F (M)

Program Formally, we can define the top-level of a file as the body of generative functor

2.1.1 Name spaces

Scopes The structure of paths define scopes: names are accessible only in some parts of the
code. The mechanism is the same in module expressions and in signatures; we use the latter
for illustration. The two constructs that introduce a new scope are generative functors and
module types :

() → S module type T = S

The names defined in S are not accessible outside of S, as there is no path with a unit argument
and no path with a projection out of a module type name. By contrast, module bindings and
applicative functors introduce sub-scopes that are still part of the same enclosing scope. If
we consider:

moduleX : sigA type t = . . . end (Y : Sa) → sigA type t = . . . end

The name t is accessible outside of the signature, via a qualified access with a path.
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2.1.2 Shadowing

There are two main variants of shadowing: direct and local. Direct shadowing occurs when
to bindings are made with the same name in the same structure or same structural signature.
OCaml allows direct shadowing of value fields in structures, which is used by some coding
patterns, but disallows direct shadowing of type fields1. In both type system of Chapter 3
and Chapter 4, we disallow direct shadowing. Local shadowing occurs when a bindings made
inside a structure uses the same name as a binding coming from an enclosing structure. In
our language, we use self-references to disambiguate. Let us consider the following example
of OCaml code (on the left) and our language (on the right):

1 module M = struct
2 type t = int
3 module X = struct
4 type t = bool
5 val x : t = true
6 end
7 type u = t * X.t
8 end

1 moduleM = structA
2 type t = int

3 moduleX = structB
4 type t = bool

5 let x : B.t = true
6 end
7 typeu = A.t×A.X.t
8 end

In the OCaml code, at (line 5) the type t refers to the local definition at (line 4), which as
shadowed the declaration at (line 2). This shadowing ends when we exit the submodule, at
(line 6), and both declarations become accessible at the same time. Using self-references, we
can distinguish A.t and B.t: they are considered as different identifiers. In practice, OCaml
generates fresh identifiers attached to every name for disambiguation. This serves more-or-
less the same purpose as self-references, but in an effectfull way that would be hard to model
formally. By contrast, self-references act as a normal name binder attached to the structure
(or signature), they can be freely renamed (α-convertibility). We believe that overall, they
simplify the formal presentation at the cost of being more verbose.

2.2 Semantics

ML modules have (surprisingly) very simple semantics. Basically, at runtime, all types are
removed – the semantic is type-erasing – and modules are elaborated away into core-language
constructs (using functions and records). The type erasing semantics ensures that safety
guarantees of the type system are obtained at no cost at runtime.

Core language We assume that the core language supports simple untyped functions,
records and unit argument. Formally, we suppose that it extends the following calculus:

e ::= x | () | λx.e | e e |
{
ℓi = xi

}
| e.ℓ | e@ e | . . . (Terms)

v ::= x | () | λx.e |
{
ℓi = vi

}
| . . . (Values)

1include and open have a special treatment: the declarations or bindings imported by them can be
shadowed, even type fields, but they cannot be used to shadow neither a type or value field.
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We denote record concatenation with the symbol @. The small-steps semantic judgment,
written e⇝ e′, is given by the following rules:

(λx.e) v ⇝ e[x 7→ v]
e1 ⇝ e′1

e1 e2 ⇝ e′1 e2

e2 ⇝ e′2
v1 e2 ⇝ v1 e

′
2

{. . . , ℓ = v, . . .} .ℓ⇝ v
ei ⇝ e′i

{. . . , ℓi = ei, . . .}⇝ {. . . , ℓi = e′i, . . .}

ℓ1#ℓ2{
ℓ1 = v1

}
@
{
ℓ2 = v2

}
⇝

{
ℓ1 = v1, ℓ2 = v2

} e1 ⇝ e′1
e1 @ e2 ⇝ e′1 @ e2

e2 ⇝ e′2
v1 @ e2 ⇝ v1 @ e′2

We denote disjointness of the lists of labels with #.

Type erasure We can then define an erasing operation ⌊·⌋ that translate modules and
paths into this untyped calculus. We start with two technical details:

1. We assume a collection of labels indexed by identifiers, i.e., ℓI is the unique label asso-
ciated with the identifier I

2. We assume that the variables of the core language can be extended to contain the vari-
ables of the form A.I for any self-reference and identifier and Y for functor parameters.

Using those, we define the erasing translation. Elaboration of paths is defined by the following
cases:

⌊A.X⌋ = A.X ⌊P.X⌋ = ⌊P ⌋.ℓX ⌊Y ⌋ = Y ⌊P (P ′)⌋ = ⌊P ⌋ (⌊P ′⌋)

Then the erasing of module expressions is given by the following rules:

⌊(P : S)⌋ = ⌊P ⌋ ⌊M.X⌋ = ⌊M⌋.ℓX ⌊structA D end⌋ = ⌊D⌋A ⌊() → M⌋ = λx.⌊M⌋

⌊(Y : S) → M⌋ = λxY .⌊M⌋ ⌊P ()⌋ = ⌊P ⌋()

Finally, the erasing of modules relies on the erasing of bindings, which shows that structures
are “dependent” records:

⌊letx = e, D⌋A = (λx′. {ℓx = x′}@ ⌊D⌋A[A.x 7→ x′]) ⌊e⌋

⌊moduleX = M, D⌋A = (λx. {ℓX = x}@ ⌊D⌋A[A.X 7→ x]) ⌊M⌋

⌊type t = u, D⌋A = ⌊D⌋A ⌊module type T = S, D⌋A = ⌊D⌋A

And that’s it. The semantics of modules is very simple. ML modules are an interesting case
of programming language research where the type system is quite complex, with involved
soundness proofs, while the semantic model is mostly trivial. In the literature, the underlying
semantic is sometimes not even mentioned.



Chapter 3

M ω

In this chapter, we present Mω, a type system for ML modules that produces inferred signa-
tures in an ML-like syntax extended with Fω type binders (∃, ∀, λ). The goal of this system
is to provide a specification and an intuition for the core mechanisms informally presented in
the previous chapter. The system is proven sound by a full elaboration in Fω.

Contributions Mω is strongly inspired by previous works, notably Rossberg et al. [2014]
and Russo [2004]. The core contributions of this chapter are the introduction of transpar-
ent existential types for the soundness proof of the skolemization operation, the anchoring
algorithm for reconstruction of source signatures from Mω signatures and the treatment of
abstract signatures via predicative kind polymorphism.

Overview We present the type system in Section 3.1: the elaboration of ML signatures
into Mω signatures is presented in Section 3.1.2, along with the key mechanisms of extrusion
and skolemization. Subtyping is presented in Section 3.1.3. The typing of module expressions
is detailed in Section 3.1.4.

In Section 3.2, we explain how the right granularity of applicativity can be piggy-backed
on the type system by introducing extra identity abstract type fields.

In Section 3.3, we focus on the reconstruction of source signatures from Mω signatures, a
process call anchoring that acts as the inverse of the signature elaboration. We first explicit
the expressiveness gaps of the source signature syntax, then we present an algorithm that
implements anchoring. Finally, we state and prove the properties of this algorithm.

In Section 3.4, we prove the soundness of Mω via a full elaboration into Fω. This proof
relies on the new mechanism of transparent existential types (Section 3.4.4), a weaker form
of existential types that supports skolemization. We show that extending Fω with existential
types can be done internally, i.e., we define transparent existential types as a library of Fω

(Section 3.4.5). Finally, the actual elaboration is given an proven sound with respect to Fω

typing rules (Sections 3.4.6 and 3.4.7).

49
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Mω Kinds
κ ::= ⋆ | κ�κ

Mω Types
τ ::= α | τ(τ) | . . .

Environment
Γ ::= ∅ (Empty)

| Γ, α (Abstract type)
| Γ, (Y : C) (Functor parameter)
| Γ, (A.D) (Declaration)

Opacity
♢ ::= ▽ (Transparent) | ▼ (Opaque)

Mω signature
C ::= sig D end (Structural signature)

| ∀α.C → C (Applicative functor)
| () → ∃▼α.C (Generative functor)

Mω declaration
D ::= val x : τ (Values)

| type t = τ (Types)
| module X : C (Modules)
| module type T = λα.C (Module types)

Figure 7: Syntax of Mω signatures.

3.1 The Mω type system

3.1.1 Overview and technical details

In Figure 7, we introduce the syntax for Mω-signatures C and Mω-declarations D. By conven-
tion, we use curvy capitals ( C, D, . . . ) for Mω-objects.

Types The grammar of Mω types is the same as the grammar of source types, except that
qualified types Q.t are replaced by abstract types α or applied abstract types τ(τ), where
α range over a collection of abstract type variables that are distinct from the type variables
of the source type language. We use the base kind ⋆ for the kind of first-order types, and
κ�κ for higher order kinds. In the examples, we sometimes use φ instead of α to denote an
higher-order type variable. The language is explicitly kinded, as is Fω. However we leave kinds
mostly implicit in this section for the sake of readability—we display them for the soundness
proof in Section 3.4.

Quantifiers positions Mω-signatures C use Fω binders: the universal binder ∀ for functor
parameters, the existential binder ∃ for the body of generative functors and the (type-level)
lambda binder λ for module types. We annotate existential quantifiers with an opacity flag
♢ to indicate generativity (using the opaque flag ▼) or applicativity (using the transparent
flag ▽). This notion is unrelated to transparent signatures. Transparent existentials ∃▽α.Cdo
not appear directly in the grammar of Figure 7 but in the typing judgment for module
expressions, which uses existentially quantified signatures of either form ∃▽α.C or ∃▼α.C.
Module types λα.C are parametric in each type variable α. A parametric signature λα.C may
later be transformed into a universal signature ∀α.C, an existential signature ∃♢α.C, or just
a concrete signature C[α 7→ τ ]. Crucially, module declarations module X : C foes not allow
quantifiers in front of C – they must have been extruded away at the top of the signature –
nor inside the codomain of applicative functors ∀α.Ca → C – they must have been skolemized
away.

Type equivalence We consider Mω types up to αβ-equivalence. α-equivalence is standard:
bounded type variables and functor parameters can be freely renamed, but other identifiers
cannot. β-equivalence is defined as the symmetric, reflexive, and transitive and congruent
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closure of β-reduction, which is defined by the single following rule for type applications :

(λα.σ)τ ⇝β σ[α 7→ τ ]

Environments and wellformedness Typing environments contain three types of bind-
ings: an abstract type variable (α :κ), a functor argument Y : C, or a declaration A.D. All
bindings in Γ are unique (there is no shadowing). Technically, this is achieved by defining
mutually recursive well-formedness predicates over environments ⊢ Γ, signatures Γ ⊢ C, and
declarations Γ ⊢ D, along with a well-kindness predicate for types Γ ⊢ τ : κ. The rules are
standard and given in Figure 8. We write · /∈ Γ as a shortcut for · /∈ dom(Γ). The only
subtlety comes from the wellformedness of structural signatures:

disjoint(D) Γ ⊢ D
Γ ⊢ sig D end

Here, we use an helper predicate disjoint(D) to ensure that all field identifiers present in the
list D are pair-wise distinct.

Wellformedness conditions As a simplifying convention for the rest of this chapter, we
consider wellformedness of the environment as a precondition to all rules. Alternatively, we
could have added wellformedness preconditions sparingly, only to the rules that are leaves
of the derivation, i.e., that do not have another typing or subtyping as a premise. Then,
we would have shown that typing and subtyping always implies the wellformedness of the
environment: a rule is either a leaf and has an explicit wellformedness premise, or is not a
leaf and the wellformedness of the environment is implied by another premise by induction
hypothesis. Here, we do not see any benefit in this latter approach and we use the simplifying
convention of having wellformedness everywhere.

Judgments

• Γ ⊢ M : ∃♢α.C and Γ ⊢ D : ∃♢α.D : typechecking of modules and bindings, defined in Fig-
ure 13 and discussed in Section 3.1.4.

• Γ ⊢ S : λα.C and Γ ⊢ D : λα.C : typechecking of signatures and declarations, defined
in Figure 9 and discussed in Section 3.1.2.

• Γ ⊢ u : τ and Γ ⊢ e : τ — elaboration of core-language types and type-checking of core-
language expressions

• Γ ⊢ C < C′ and Γ ⊢ D < D′ : subtyping of signatures and declarations, defined in Fig-
ure 11 and discussed in Section 3.1.3.

3.1.2 Signatures type-checking

The key concepts of Mω can be illustrated with the typechecking of signatures Γ ⊢ S : λα.C
(and declarations), which translates a source signature S into its Mω counterpart λα.C, making
the set of abstract type α explicit. The typechecking of signature also acts as an elaboration:
source signatures are checked an translated into Mω-signatures. We refer to both typechecking
and elaboration, using the former to emphasize on the wellformedness check and the latter to
emphasize on the translation into the Mω-signature language. The full set of rules is given
in Figure 9 and discussed below.
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⊢ ∅
⊢ Γ α /∈ Γ

⊢ Γ, (α :κ)

⊢ Γ Y /∈ Γ Γ ⊢ C
⊢ Γ, Y : C

⊢ Γ A.x /∈ Γ Γ ⊢ τ : ⋆

⊢ Γ, A.val x : τ

⊢ Γ A.t /∈ Γ Γ ⊢ τ : κ

⊢ Γ, A.type t = τ

⊢ Γ A.X /∈ Γ Γ ⊢ C
⊢ Γ, A.module X : C

⊢ Γ A.T /∈ Γ α /∈ Γ Γ, (α :κ) ⊢ C
⊢ Γ, A.module type T = λα.C

(a) Wellformdness of environments

disjoint_identifiers(D) Γ ⊢ D
Γ ⊢ sig D end

α /∈ Γ Γ, (α :κ) ⊢ Ca Γ, (α :κ) ⊢ C
Γ ⊢ ∀α.Ca → C

α /∈ Γ Γ, (α :κ) ⊢ C
Γ ⊢ () → ∃▼α.C

(b) Wellformdness of signatures

Γ ⊢ τ : ⋆

Γ ⊢ val x : τ

Γ ⊢ τ : κ

Γ ⊢ type t = τ

Γ ⊢ C
Γ ⊢ module X : C

α /∈ Γ Γ, (α :κ) ⊢ C
Γ ⊢ module type T = C

(c) Wellkindness of declarations

(α :κ) ∈ Γ

Γ ⊢ α : κ

Γ ⊢ τ : κ�κ′ Γ ⊢ σ : κ

Γ ⊢ (τ σ) : κ′
α /∈ Γ Γ, (α :κ) ⊢ τ : κ′

Γ ⊢ λ(α :κ). τ : κ�κ′

(d) Well-kindness of types

Figure 8: Wellformedness rules for environment, signatures and types.

Declarations

An abstract type declaration introduces an abstract type variable α that is λ-bound:

M-Typ-Decl-TypeAbs
Γ ⊢A (type t = A.t) : λα.(type t = α)

Since the name t is also be accessible in the following declarations, the λ-binder for α must
be lifted to enclose the whole region where t, hence α, is accessible. This lifting is performed
in two places:

M-Typ-Decl-Seq
Γ ⊢A D1 : λα1.D1 Γ, α1, A.D1 ⊢A D : λα.D

Γ ⊢A D1, D : λα1 α. D1,D

M-Typ-Decl-Mod
Γ ⊢ S : λα.C

Γ ⊢A (moduleX : S) : λα.(module X : C)

First, when merging a list of declarations in Rule M-Typ-Decl-Seq: the two sets of abstract
types α and α1 are merged together in front of the list of declarations. Second, lifting also
occurs when typing a module declaration (Rule M-Typ-Decl-Mod) where the set of abstract
types α introduced in the elaboration of S are lifted to the outside of the declaration. In a
nutshell, abstract types introduced by submodules are not bound at the declaration of the
submodule, but lifted to the enclosing signature.
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M-Typ-Sig-ModType
Γ ⊢ P : sig D end module type T = λα.C ∈ D

Γ ⊢ P.T : λα.C

M-Typ-Sig-LocalModType
A.(T : module type λα.C) ∈ Γ

Γ ⊢ A.T : λα.C

M-Typ-Sig-GenFct
Γ ⊢ S : λα.C

Γ ⊢ () → S : () → ∃▼α.C

M-Typ-Sig-AppFct
Γ ⊢ Sa : λα.Ca Γ, α, Y : Ca ⊢ S : λβ.C

Γ ⊢ (Y : Sa) → S : λβ′.∀α.Ca → C
[
β 7→ β′(α)

]
M-Typ-Sig-Str

Γ ⊢A D : λα.D A /∈ Γ

Γ ⊢ sigA D end : λα.sig D end

M-Typ-Sig-Con
Γ ⊢ P : C Γ ⊢ S : λα.C′ Γ ⊢ C < C′[α 7→ τ ]

Γ ⊢ (= P < S) : C′[α 7→ τ ]

(a) Signature typing rules.

M-Typ-Decl-Val
Γ ⊢ u : τ

Γ ⊢A (valx : u) : (val x : τ)

M-Typ-Decl-Type
Γ ⊢ u : τ

Γ ⊢A (type t = u) : (type t = τ)

M-Typ-Decl-TypeAbs
Γ ⊢A (type t = A.t) : λα.(type t = α)

M-Typ-Decl-Mod
Γ ⊢ S : λα.C

Γ ⊢A (moduleX : S) : λα.(module X : C)

M-Typ-Decl-ModType
Γ ⊢ S : λα.C

Γ ⊢A (module type T = S) : (module type T = λα.C)

M-Typ-Decl-Empty
Γ ⊢A ∅ :∅

M-Typ-Decl-Seq
Γ ⊢A D1 : λα1.D1 Γ, α1, A.D1 ⊢A D : λα.D

Γ ⊢A D1, D : λα1 α. D1,D

(b) Declaration typing rules.

M-Typ-Type-Path
Γ ⊢ P : sig D end type t = τ ∈ D

Γ ⊢ P.t : τ

M-Typ-Type-Local
A.(t : type τ) ∈ Γ

Γ ⊢ A.t : τ

(c) Extension to the core-language typing rules

Figure 9: Signature and declaration typing rules.

By contrast, when typing module-type declarations, the binder is not lifted, as the module-
type declaration defines its own scope. The declarations inside C are not accessible in the rest
of the enclosing signature.

M-Typ-Decl-ModType
Γ ⊢ S : λα.C

Γ ⊢A (module type T = S) : (module type T = λα.C)

Typing declaration of value or type fields relies on the elaboration judgment of core-
language types into Fω, Γ ⊢ u : τ which is left abstract.

M-Typ-Decl-Val
Γ ⊢ u : τ

Γ ⊢A (valx : u) : (val x : τ)

M-Typ-Decl-Type
Γ ⊢ u : τ

Γ ⊢A (type t = u) : (type t = τ)

Still, we extend it with rules to translate qualified types into Mω types:
M-Typ-Type-Path
Γ ⊢ P : sig D end type t = τ ∈ D

Γ ⊢ P.t : τ

M-Typ-Type-Local
A.(t : type τ) ∈ Γ

Γ ⊢ A.t : τ



54 CHAPTER 3. M ω

1 sigA
2 type t = A.t
3 module type T =
4 sigC type t = C.t end
5 moduleX : A.T
6 moduleG : () → A.T
7 moduleF : (Y : A.T ) → A.T
8

9 type v = A.t×A.X.t
10 typew = A.F (A.X).t
11 end

1 λα1, α2, φ.sig
2 type t = α1

3 module type T =
4 λα.sig type t = α end
5 module X : sig type t = α2 end
6 module G : () → ∃▼α.sig type t = α end
7 module F : ∀β.sig type t = β end →
8 sig type t = φ(β) end
9 type v = α1 × α2

10 type w = φ(αu)
11 end

Figure 10: On the left-hand side, we consider a source signature. The corresponding signature
resulting from typechecking in Mω is given on the right-hand side. The signature mostly have
type declarations because it displays the interesting mechanisms of the type system, but in real
use-cases, signatures have mostly value declarations. Both the abstract type variables α1, α2

and φ are extruded at the top-level of the signature, despite the fact that they come from
different levels of the signature. The intermediate definition of the module type T is inlined.
The applicative functor introduces a higher-order type φ, while the generative introduces only
a base kind type variable that is not extruded.

Signatures

Structural signatures The typing of declarations is injected in the typing of signatures
by the rule for structural signatures:

M-Typ-Sig-Str
Γ ⊢A D : λα.D A /∈ Γ

Γ ⊢ sigA D end : λα.sig D end

This is the last place where extrusion happens (see M-Typ-Decl-Type, M-Typ-Decl-Mod,
M-Typ-Decl-Seq for the other rules): the abstract types α introduced by the declarations
are lifted in front of the whole signature.

Module-types Module-type definitions are inlined by the following two rules:

M-Typ-Sig-ModType
Γ ⊢ P : sig D end module type T = λα.C ∈ D

Γ ⊢ P.T : λα.C

M-Typ-Sig-LocalModType
A.(T : module type λα.C) ∈ Γ

Γ ⊢ A.T : λα.C

Therefore Mω signatures do not have a counterpart for module-type paths Q.T that occur in
source signatures.

Transparent signatures The rule M-Typ-Sig-Trans displays an interesting mechanism:

M-Typ-Sig-Trans
Γ ⊢ S : λα.C Γ ⊢ P : C′ Γ ⊢ C′ < C[α 7→ τ ]

Γ ⊢ (= P < S) : C[α 7→ τ ]

The source signature S is first elaborated into an Mω-signature λα.C′. The Mω-signature C of
the path P is then obtained by module typing. From there, we use subtyping to compare the
two signatures. But there is a catch: λα.C is parametric, whereas C′ is not. Therefore, we need
to first find an instantiation of the abstract types α by some concrete types τ . Finding such
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instantiation is non-trivial, especially in the presence of higher-order types. It is discussed in
more details along with subtyping in Section 3.1.3. Once the instantiation has been found, the
instantiated signature C[α 7→ τ ] can be compared against C′. The result of the elaboration is
the instantiation C[α 7→ τ ]. Notably, no new abstract type is introduced. It fits the intuition
that transparent signatures share all their type fields with another pre-existing module, and
therefore all abstract type variables have always already been introduced.

M-Typ-Sig-GenFct
Γ ⊢ S : λα.C

Γ ⊢ () → S : () → ∃▼α.C

Generative functors Here, the abstract types α intro-
duced by the codomain of the functor are not extruded in
front of the whole signature. Instead, they are left as an
opaque existential signature ∃▼α.C for the functor codomain.
Indeed, every instantiation of the functor will generate new
(incompatible) abstract types α, as required for generativity.

Applicative functors By contrast, applicative functors should not be assigned a signature
of the form ∀α.C → ∃▼β.C′ where all applications would produce new abstract types, nor
λβ.∀α.C → C′ where all applications would share the same types regardless of their argument.
Instead, the following rule follows the solution of Biswas [1995] and reused in Russo [2004]
and F-ing (Rossberg et al. [2014]):

M-Typ-Sig-AppFct
Γ ⊢ Sa : λα.Ca Γ, α, Y : Ca ⊢ S : λβ.C

Γ ⊢ (Y : Sa) → S : λβ′.∀α.Ca → C
[
β 7→ β′(α)

]
That is, we use higher-order abstract types β′ and apply each to the universally quantified
variables α to capture the fact that the each abstract type is some type function of the argu-
ments. This gives a signature of the form λβ′.∀α.C → C

[
β 7→ β′(α)

]
. We call this extrusion

out of an arrow type and out of an universal binder skolemization. Here, it is merely a ma-
nipulation of types and signatures that does not pose a challenge for soundness. In a sense,
we can manipulate types in any way as long as they remain wellformed. One key technical
aspect of Mω is to justify a similar skolemization but for the type of module expressions, as
described in Section 3.4.

Here and until Section 3.2, we have a type-only applicativity, like Moscow ML: the
abstract types β′ of the codomain depend on the abstract types α of the parameter, not on
the whole module. We then change it to the module-level equality of OCaml in Section 3.2.

3.1.3 Subtyping

The subtyping judgment Γ ⊢ C < C′ and its helper judgment Γ ⊢ D < D′ check that a signa-
ture C is more restrictive than a signature C′. In practice, this boils down to C having more
fields and introducing fewer abstract types than C′. Intuitively, it can be understood as “there
are less modules with the signature C than with the signature C′”. Overall, subtyping in Mω is
a combination of three orthogonal mechanisms:

• structural subtyping between record types, including deletion and reordering of fields.
• subtyping between function types: covariant on their codomains, contravariant on their

domains
• subtyping between universal types and between existential types via instantiation. Orig-

inally introduced as the (sub) rule for “type containment” in Mitchell [1988], or some-
times called subtyping à la F η, it allows to compare types with different quantifiers by
partially instantiating the quantifiers.

The full set of subtyping rules is given in Figure 11 and discussed below.
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M-Sub-Sig-Struct
D0 ⊆ D Γ ⊢ D0 < D′

Γ ⊢ sig D end < sig D′
end

M-Sub-Sig-GenFct
Γ, α ⊢ C < C′[α′ 7→ τ ]

Γ ⊢ () → ∃▼α.C < () → ∃▼α′.C′

M-Sub-Sig-AppFct
Γ, α′ ⊢ C′

a < Ca[α 7→ τ ] Γ, α′ ⊢ C[α 7→ τ ] < C′

Γ ⊢ ∀α.Ca → C < ∀α′.C′
a → C′

M-Sub-Decl-Val
Γ ⊢ (val x : τ) < (val x : τ)

M-Sub-Decl-Type
Γ ⊢ (type t = τ) < (type t = τ)

M-Sub-Decl-Mod
Γ ⊢ C < C′

Γ ⊢ (module X : C) < (module X : C′)

M-Sub-Decl-ModType
Γ, α ⊢ C < C′ Γ, α ⊢ C′ < C

Γ ⊢ (module type T = λα.C) < (module type T = λα.C′)

(a) Subtyping rules for signatures

M-Sub-Decl-Val
Γ ⊢ (val x : τ) < (val x : τ)

M-Sub-Decl-Type
Γ ⊢ (type t = τ) < (type t = τ)

M-Sub-Decl-Mod
Γ ⊢ C < C′

Γ ⊢ (module X : C) < (module X : C′)

M-Sub-Decl-ModType
Γ, α ⊢ C < C′ Γ, α ⊢ C′ < C

Γ ⊢ (module type T = λα.C) < (module type T = λα.C′)

(b) Subtyping rules for declarations

Figure 11: Mω– Subtyping rules (signatures and declarations)

Structural signatures The key rule is the comparison of two structural signatures:

M-Sub-Sig-Struct
D0 ⊆ D Γ ⊢ D0 < D′

Γ ⊢ sig D end < sig D′
end

A subset D0 of the fields D of the left-hand side signature is matched and subtyped against
the full set of fields of the right-hand side signature D′. This subset D0 can be reordered and
does not have to contain all the fields of the right-hand side signature. Algorithmically, it
is easy to find D0 from the combination of D and D′: for each declaration of D′, we must
find a corresponding declaration in D with the same identifier, and there exists at most one
(identifiers are pairwise distinct in a structural signature).

Declarations Subtyping between declarations boils down to a matching of definitions, as
we assume no subtyping on the core language. The identifiers always have to be the same on
both sides. For values and type declarations, we have:

M-Sub-Decl-Val
Γ ⊢ (val x : τ) < (val x : τ)

M-Sub-Decl-Type
Γ ⊢ (type t = τ) < (type t = τ)

Subtyping propagates down to submodules, which gives the following rule:

M-Sub-Decl-Mod
Γ ⊢ C < C′

Γ ⊢ (module X : C) < (module X : C′)
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Subtyping between module-types only allows for a different ordering of fields between the two
definitions, which we enforce by requiring subtyping in both directions:

M-Sub-Decl-ModType
Γ, α ⊢ C < C′ Γ, α ⊢ C′ < C

Γ ⊢ (module type T = λα.C) < (module type T = λα.C′)

We could also have made subtyping between module types more restricted, requiring the same
signature (up to Mω signature equivalence defined in Section 3.1.1) on both sides. OCaml uses
a slightly more restricted criterion, requiring code-free subtyping between the two declarations.
It is discussed in more detail in Section 4.3.6. This more restricted criterion makes sens when
the names of the fields are kept in the resulting signature: changing the definition of type t = u

when there are occurrences of t remaining in the signature should only be allowed if the change
of definition is code-free. In Mω, definitions are inlined, so changing the definition does not
affect the rest of the signature.

Generative functors The rule for generative functors M-Sub-Sig-GenFct shows the mech-
anism of subtyping by instantiation of quantifiers:

M-Sub-Sig-GenFct
Γ, α ⊢ C < C′[α′ 7→ τ ]

Γ ⊢ () → ∃▼α.C < () → ∃▼α′.C′

It can be read as a two-step process, where we first check the subtyping between ∃▼α.C and
∃▼α′.C′, which in turn amounts to finding an instantiation of α′ by some type τ ′ (that might
use the α). While this is one of the standard ways of specifying subtyping for existential
types, as done in Mitchell [1988]; Russo [2004]; Rossberg et al. [2014], it quite permissive, as
it does not require both sets of variables to be the same. However, it is quite algorithmi-
cally challenging in the presence of higher-order abstract types, and could potentially lead to
undecidability of subtyping.

This problem has already been identified and solved by Rossberg et al. [2014]. We reuse
their argument, which we sum-up below. Decidability follows from the fact that subtyp-
ing Γ ⊢ C < C′ is actually only checked when the right-hand-side signature C′ has an additional
property that makes the instantiation easy to compute. More precisely, they define:

• rooted type variables Let us consider a type variable α of kind ⋆ first. We say that α is
rooted in a signature C′ if the signature contains a type field of the form type t = α in a
strictly positive position. The key observation is that rooted type variables can be easily
instantiated during subtyping. Indeed, for the subtyping to succeed, there have to be
some corresponding type field of the form type t = τ with the same identifier t occurring
in a strictly positive part of C. From the non-variance of declaration subtyping, we know
that the only possible instantiation of α has to be τ . Therefore, the instantiation can
be found for rooted type variables, using the two signatures C and C′.
This argument extends to higher-order types. For functors with one argument, a type
variable φ is rooted in ∀α.Ca → C if C contains in a strictly positive position a type field of
the form type t = (φα). Again, the left-hand-side signature C must have a corresponding
type field of the form type t = τ . Therefore, the only possible instantiation of φ is λα.τ
For several arguments, the set of type variables α has to be the concatenation of all
universally quantified variables from the different levels of functors.

• explicit signatures are signatures where all quantified abstract types are rooted. Signa-
tures obtained by elaboration from source signatures are always explicit.

• valid signatures are signatures where all functors have an explicit signature on the left-
hand side of the arrow.
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From there, they show that typechecking only produces valid signatures, and that subtyping
is only checked with an explicit signature on the right-hand side and a valid signature on the
left-hand side.

An interesting consequence is that decidability of subtyping (and therefore, decidability
of typechecking) crucially relies on the fact that the elaboration of source signatures always
produces explicit signatures. If we where to allow the user to input non-explicit signatures—
either with an unrestricted module type of construct, or directly in Mω signatures syntax—we
would lose decidability. This hints at the fact that ML-modules are not just merely a mode of
use of Fω (as written in F-ing (Rossberg et al. [2014])), but also an sweet spot, where changes
seen as minor from Mω could easily break decidability.

Applicative functors Subtyping between functors combines both instantiation and sub-
typing between arrow types:

M-Sub-Sig-AppFct
Γ, α′ ⊢ C′

a < Ca[α 7→ τ ] Γ, α′ ⊢ C[α 7→ τ ] < C′

Γ ⊢ ∀α.Ca → C < ∀α′.C′
a → C′

We have a standard contra-variance for the argument of applicative functors. The same
instantiation [α 7→ τ ] is used for both the domain and codomain.

3.1.4 Module Expressions type-checking

Typechecking of expressions Γ ⊢ M : ∃♢α.C infers an Mω-signature ∃♢α.C given a source mod-
ule M. Technically, the judgment should be read Γ ⊢♢ M : ∃♢α.C where the opacity flag on the
judgment is a typing mode that is the same as the opacity mode of the existential quantifier.
As we use opacity flags as modes, we also refer to the opaque flag ▼ as the generative mode,
and to the transparent flag ▽ as the applicative mode.

To lighten the notation, we omit the mode on the judgment except when it is genera-
tive and there is no existential type to enforce it. Thus, when we write Γ ⊢ M : ∃▼∅.C or
Γ ⊢ M : ∃▽∅.C when α is empty, we actually mean Γ ⊢▼ M : C and Γ ⊢▽ M : C. The same conven-
tion applies to typing rules for bindings M-Typ-Decl-*. Typing rules for module expressions
and bindings are given on Figure 13.

Skolemization The rule for applicative functors is a crucial one:

M-Typ-Mod-AppFct
Γ ⊢ Sa : λα.Ca Γ, α, (Y : Ca) ⊢ M : ∃▽β.C

Γ ⊢ (Y : Sa) → M : ∃▽β′.∀α.Ca → C
[
β 7→ β′(α)

]
In order to share the abstract types β produced by the inference of the body of the functor M,
we skolemize them out of the universal quantification (and out of the arrow type) by making
them higher-order, and applying them to the universally quantified variables α. However, this
is unsound when the abstract types are opaque existential types. We thus enforce transparent
existential types for the body of the functor. The technical reasons behind this restriction are
detailed in Section 3.4. In a nutshell, skolemization of transparent existential types is always
sound, and applicative functor only need this restricted form of existentials.

One might wonder why the corresponding rule M-Typ-Sig-AppFct for typing signatures
of applicative functors does not feature a similar restriction. The key difference is that typing
of signatures is just a mere manipulation of types where everything is possible, as long as the
resulting signatures are wellformed. By contrast, for the typing of module expressions, the
soundness relies on the ability to actually produce a term of the corresponding type in Fω.
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Propagation of modes Signatures with transparent existentials are inferred by default
and are required for the body of applicative functors, as seen above. Module expressions
that are inherently generative, such as calling a generative functor or computing impure core
expressions (or unpacking a first-class module), can only be typed with opaque existential
signatures (in generative mode):

M-Typ-Mod-GenFct
Γ ⊢ M : ∃▼α.C

Γ ⊢ () → M : () → ∃▼α.C

M-Typ-Mod-AppGen
Γ ⊢ P : () → ∃▼α.C

Γ ⊢ P () : ∃▼α.C

Modules can be downgraded from applicative to generative via subsumption, but not the other
way around:

M-Typ-Mod-Seal
Γ ⊢ M : ∃▽α.C
Γ ⊢ M : ∃▼α.C

All other rules are agnostic of the typing mode. With the convention that M-Typ-Mod-
Seal is only used when the generative mode is required for the premise of another rule, i.e.,
applicative signatures are inferred by default, the system is syntax directed.

Structures are regular, i.e., all bindings have the same mode. This is enforced by the
Rule M-Typ-Bind-Seq for sequences, where the mode is the same on both premises:

M-Typ-Mod-Struct
Γ ⊢A B : ∃♢α.D A /∈ Γ

Γ ⊢ structA B end : ∃♢α.sig D end

M-Typ-Bind-Seq
Γ ⊢A B : ∃♢α1.D Γ, α1, A.D ⊢A B : ∃♢α.D

Γ ⊢A B, B : ∃♢α1, α.D,D

Bindings The rules for bindings assume a given core-language expression typing judgment
Γ ⊢♢ e : τ equipped with a mode that tracks the presence of effects. As explained in Sec-
tion 1.2.2, it is not present in current OCaml, where it is the user’s responsibility to use the
generative functors in such cases:

M-Typ-Bind-Let
Γ ⊢♢ e : τ

Γ ⊢A♢ (letx = e) : (val x : τ)

M-Typ-Bind-Type
Γ ⊢ u : τ

Γ ⊢A♢ (type t = u) : (type t = τ)

M-Typ-Bind-Mod
Γ ⊢ M : ∃♢α.C

Γ ⊢A (moduleX = M) : (∃♢α.module X : C)

M-Typ-Bind-ModType
Γ ⊢ S : λα.C

Γ ⊢A (module type T = S) : (module type T = λα.C)

The core-language expression typing is extended by the following rules for qualified variables:

M-Typ-Type-Path
Γ ⊢ P : sig D end val x : τ ∈ D

Γ ⊢♢ P.x : τ

M-Typ-Type-Local
A.(x : val τ) ∈ Γ

Γ ⊢♢ A.x : τ

Paths The typing of paths, which may contain functor applications (of applicative functors),
is defined by the following rules:

M-Typ-Mod-Var
(Y : C) ∈ Γ

Γ ⊢ Y : C

M-Typ-Mod-Local
(A.X : module C) ∈ Γ

Γ ⊢ A.X : C

M-Typ-Mod-AppApp
Γ ⊢ P : ∀α.Ca → C Γ ⊢ P ′ : C′ Γ ⊢ C′ < Ca[α 7→ τ ]

Γ ⊢ P (P ′) : C[α 7→ τ ]

There is an implicit subtyping check at functor application.
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Introduction of abstract types Ascription to a signature S that elaborates to a para-
metric signature λα.C returns a signature ∃▽α.C with transparent abstract types:

M-Typ-Mod-Ascr
Γ ⊢ P : C Γ ⊢ S : λα.C′ Γ ⊢ C < C′[α 7→ τ ]

Γ ⊢ (P : S) : ∃▽α.C′

This rule has some resemblance with Rule M-Typ-Sig-Con for typechecking a concrete sig-
nature (= P < S): in both cases, we check that the Mω signature of P is a subtype of
the Mω-signature λα.C′ of S. By contrast, however, we here drop the matching substitution
in the result signature ∃▽α.C′ and instead introduce the abstract types α. If the signature
is not parametric, i.e., does not bind abstract types, the result does not introduce new ab-
stract types either. In particular, transparent ascription (P <: S), which is syntactic sugar for
(P : (= P < S)), i.e., the opaque ascription of P to the transparent signature (= P < S), be-
haves as expected, filtering out components of P as prescribed by S but without creating new
abstract types. Note that applications of an applicative functor (Rule M-Typ-Mod-AppApp)
do not introduce new abstract types per se, but applications of already existing higher-order
abstract types—which is the key to the sharing between different applications of the same (or
an equivalent) functor to the same (or equivalent) arguments.

The only other construct that introduces abstract types is abstract-type binding:

M-Typ-Bind-AbsType
Γ ⊢A (type t = A.t) : ∃♢α.(type t = α)

Projection and signature avoidance As explained in Section 1.3, typechecking the pro-
jection of a submodule M.X is often a source of signature avoidance: the dependencies of the
source signature of X might become dangling after the other components of the signature
of M have been lost. However, Mω signatures do not have internal dependencies; they are
non-dependent records, as all paths present in concrete type definitions have been inlined and
binders for abstract types have been lifted. This gives a simple projection rule:

M-Typ-Mod-Proj
Γ ⊢ M : ∃♢α.sig D end module X : C ∈ D α′ = fv(C) ∩ α

Γ ⊢ M.X : ∃♢α′.C

In principle, the Rule M-Typ-Mod-Proj could return the signature ∃♢α.C, leaving all vari-
ables in scope after projection. However, it also performs some form of garbage collection by
just keeping the subset α′ of abstract types α that appear free in the submodule signature C
so as to avoid keeping useless, unreachable abstract types.

3.2 Identity, Aliasing, and Type Abstraction

So far, our system handles applicativity with a type-level granularity of applicativity, as
promoted by Moscow ML. In this section, we present the introduction of identity tags in
a simple source-to-source transformation as a way to piggy-back the OCaml module-level
granularity. We also present a derived type-system that treats identities in a primitive way.
Finally, we state and prove a property of identity types that hints at abstract safety (without
obtaining it).

3.2.1 A source-to-source transformation

As explained in Section 1.2.2, applicativity of functors rely on a criterion for module equiva-
lence which gives rise to three notions of applicativity:

• type-level applicativity : the two modules have the same type fields
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Source signature

structA
module type T = sigC type t = C.t end

moduleM = (structB
moduleX = (struct type t = int end : A.T )

moduleY = struct
type a = A.X.t× bool

type b = A.X.t× int

end
end).Y

let f ((x,_ ) : A.M.a) : A.M.b = (x, 42)

end

Mω signature

∃▽α.sig
module type T = λα.sig type t = α end
module M : sig

type a = α× bool

type b = α× int

end

val f : α× bool → α× int

end

Figure 12: Example of typechecking a module in Mω. The resulting signature in Mω, on the
right-hand-side can express the type-sharing between a and b, despite the fact that there is
not type field that defines α (i.e., there is no field of the form type t = α)

• value-level applicativity : the two modules have the same type and value fields
• module-level applicativity : the two modules are statically known as being equal

To obtain the abstraction safety provided by the last two options, Rossberg et al. [2014]
introduced semantic paths: marking value and module fields with phantom abstract types
and using the type sharing mechanism to track value or module sharing. Then, type-level
applicativity can be transformed into either value level or module-level (à la OCaml) by
marking either all values or only modules.

However, as phantom abstract types act exactly as regular abstract types, we can split the
introduction of those types from the typing. We propose a simple, compositional source-to-
source transformation that explicitly introduces special abstract type fields id, called identity
tag in Figure 14. We call tagged expressions those resulting from the transformation, so as
to distinguish them from raw (untagged) expressions. Structures and functors are wrapped
inside a two-field structure with its identity tag and the actual value. New (abstract) identity
tags are introduced when typing structures and functors, or via an ascription. Conversely,
identity tags are shared when aliasing a module.

Controlling the applicativity granularity by a source-to-source transformation allows for a
simpler set of typing rules. Besides, it leaves open the choice to apply the transformation so
as to obtain OCaml coarse-grain granularity (and abstraction safety), or just stay with the
default static equivalence.

3.2.2 Derived typing system

The source-to-source transformation could also be inlined, introducing the phantom identity
types during type-checking, as in F-ing (Rossberg et al. [2014]). This would affect the rules
that “create” new modules,i.e., the rules for structures and functors. Writing the tagged
structures with a pair for sake of conciseness, this would give for module expressions:

M-Typ-Mod-Struct
Γ ⊢A B : ∃♢α.D A /∈ Γ

Γ ⊢ structA B end : ∃♢αid, α.(αid, sig D end)

M-Typ-Mod-AppFct
Γ ⊢ Sa : λα.Ca Γ, α, (Y : Ca) ⊢ M : ∃▽β.C

Γ ⊢ (Y : Sa) → M : ∃▽αid, β′.(αid,∀α.Ca → C
[
β 7→ β′(α)

]
)

M-Typ-Mod-GenFct
Γ ⊢ M : ∃♢α.C

Γ ⊢ () → M : ∃▽αid.(αid, () → ∃▼α.C)
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M-Typ-Mod-Var
(Y : C) ∈ Γ

Γ ⊢ Y : C

M-Typ-Mod-Local
(A.X : module C) ∈ Γ

Γ ⊢ A.X : C

M-Typ-Mod-Seal
Γ ⊢ M : ∃▽α.C
Γ ⊢ M : ∃▼α.C

M-Typ-Mod-Struct
Γ ⊢A B : ∃♢α.D A /∈ Γ

Γ ⊢ structA B end : ∃♢α.sig D end

M-Typ-Mod-Ascr
Γ ⊢ P : C Γ ⊢ S : λα.C′ Γ ⊢ C < C′[α 7→ τ ]

Γ ⊢ (P : S) : ∃▽α.C′

M-Typ-Mod-AppFct
Γ ⊢ Sa : λα.Ca Γ, α, (Y : Ca) ⊢ M : ∃▽β.C

Γ ⊢ (Y : Sa) → M : ∃▽β′.∀α.Ca → C
[
β 7→ β′(α)

]
M-Typ-Mod-GenFct

Γ ⊢ M : ∃♢α.C
Γ ⊢ () → M : () → ∃▼α.C

M-Typ-Mod-AppApp
Γ ⊢ P : ∀α.Ca → C Γ ⊢ P ′ : C′ Γ ⊢ C′ < Ca[α 7→ τ ]

Γ ⊢ P (P ′) : C[α 7→ τ ]

M-Typ-Mod-AppGen
Γ ⊢ P : () → ∃▼α.C

Γ ⊢ P () : ∃▼α.C

M-Typ-Mod-Proj
Γ ⊢ M : ∃♢α.sig D end module X : C ∈ D α′ = fv(C) ∩ α

Γ ⊢ M.X : ∃♢α′.C

(a) Module expression (and path) typing rules

M-Typ-Bind-Let
Γ ⊢♢ e : τ

Γ ⊢A♢ (letx = e) : (val x : τ)

M-Typ-Bind-Type
Γ ⊢ u : τ

Γ ⊢A♢ (type t = u) : (type t = τ)

M-Typ-Bind-AbsType
Γ ⊢A (type t = A.t) : ∃♢α.(type t = α)

M-Typ-Bind-Mod
Γ ⊢ M : ∃♢α.C

Γ ⊢A (moduleX = M) : (∃♢α.module X : C)

M-Typ-Bind-ModType
Γ ⊢ S : λα.C

Γ ⊢A (module type T = S) : (module type T = λα.C)

M-Typ-Bind-Empty
Γ ⊢A ∅ :∅

M-Typ-Bind-Seq
Γ ⊢A B : ∃♢α1.D Γ, α1, A.D ⊢A B : ∃♢α.D

Γ ⊢A B, B : ∃♢α1, α.D,D

(b) Binding typing rules

M-Typ-Type-Path
Γ ⊢ P : sig D end val x : τ ∈ D

Γ ⊢♢ P.x : τ

M-Typ-Type-Local
A.(x : val τ) ∈ Γ

Γ ⊢♢ A.x : τ

(c) Extension of core-language expression typing

Figure 13: Mω– Module and binding typing rules.
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Tagging
Tag {M} ≜ structA module Val = M type id = A.id end

Tag {S} ≜ sigA module Val : S type id = A.id end

Paths
JA.XK ≜ A.X JP.XK ≜ JP K.Val.X

JY K ≜ Y
q
P (P ′)

y
≜ JP K.Val(

q
P ′y)

Module expressions
JM.XK ≜ JMK .Val.X JP ()K ≜ JP K .Val()

J(P : S)K ≜ (JP K : JSK)

J() → MK ≜ Tag {() → JMK}
J(Y : S) → MK ≜ Tag {(Y : JSK) → JMK}

q
structA B end

y
≜ Tag

{
structA

q
B
y
end

}

Signatures
JA.T K ≜ A.T JP.T K ≜ JP K.Val.T

J(= P < S)K ≜ (= JP K < JSK)

J() → SK ≜ Tag {() → JSK}
J(Y : Sa) → SK ≜ Tag {(Y : JSaK) → JSK}
q
sigA D end

y
≜ Tag

{
sigA

q
D
y
end

}
Figure 14: Source-to-source transformation introducing identity tags for structures and func-
tors using two reserved identifiers id and Val. Bindings and declarations are transformed by
immediate map over submodules and submodule-types.

Signature elaboration would be modified similarly, introducing parameterized abstract types
for structures and functors. The rest of the type system would not be affected, only dealing
with id−Val pairs rather than plain signatures in some of the rules. As explained before, the
identity tags act exactly as normal type fields. Therefore, subtyping on identity types would
be restricted to equality.

3.2.3 Property of identity tags

Identity tags are introduced for new modules, then shared when a module is aliased, either
directly or via a transparent ascription. Therefore, if two modules share the same identity tag,
they originate from a common ancestor with a better signature, as stated by the following
theorem:

Theorem 1: Identity tags

Two module expressions that share the same identity tag originate from a common an-
cestor with a better signature. More precisely, if we have

Γ ⊢ JM1K : sig module Val : C1 type id = τ end

Γ ⊢ JM2K : sig module Val : C2 type id = τ end

then, they originate from the same module, which had a signature that subsumes both:

∃C0, Γ ⊢ C0 < C1 ∧ Γ ⊢ C0 < C2

The rest of this section is dedicated to the proof of this theorem. First, we consider a
slightly modified system called Mω

<: based on Fω extended with bounded quantification. We
identify Mω types and Mω signatures and use τ and C interchangeably in this section. The
system Mω

<: is built from Mω as follows:

1. We extend the quantifiers ∃♢, ∀, and λ to support bounded quantification for abstract
types that serve as identities (the other types being bound by the top bound ⊤).
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Source code

1 module X : sig type t end
2 module X’ : (= X < sig end)
3

4 module F (Y:sig end) : (= Y < sig end)

Transformed code

1 module X : sig type id module Val : sig type t end end
2 module X’ : sig type id = X.id module Val : sig end end
3

4 module F : functor (Y:sig type id module Val : sig end end) →
5 sig type id = Y.id module Val : sig end end)

Figure 15: An example of the source-to-source transformation. For readability, the result of
the transparent ascriptions have been inlined to display the equality of identity types.

2. We modify the typing and subtyping rules accordingly. Omitting the rules that either
do not feature bounds or simply thread them from the premise to the conclusion, only
three typing rules are affected, as they now feature an additional subtyping condition
as their premise (in yellow background to emphasize the differences):

MS-Typ-Sig-Con

Γ ⊢ P : C Γ ⊢ S : λ(α < τ ′ ).C′ Γ ⊢ C < C′[α 7→ τ ] Γ ⊢ τ : κ Γ ⊢ τ < τ ′

Γ ⊢ (= P < S) : C′[α 7→ τ ]

MS-Typ-Mod-Ascr

Γ ⊢ P : C Γ ⊢ S : λ(α < τ ′ ).C′ Γ ⊢ C < C′[α 7→ τ ] Γ ⊢ τ : κ Γ ⊢ τ < τ ′

Γ ⊢ (P : S) : ∃▽(α < τ ′ ).C′

MS-Typ-Mod-AppApp
Γ ⊢ P : ∀(α < τ ′ ).Ca → C

Γ ⊢ P ′ : C′ Γ ⊢ C′ < Ca[α 7→ τ ] Γ ⊢ τ : κ Γ ⊢ τ < τ ′

Γ ⊢ P (P ′) : C[α 7→ τ ]

3. We modify the typing rules for introducing abstract types (MS-Typ-Decl-TypeAbs and
MS-Typ-Bind-AbsType) by distinguishing identity tags (rules MS-Typ-Decl-TypeAbsId
and MS-Typ-Bind-AbsTypeId) from other abstract types. While abstract types are
simply bound by ⊤, identity tags are bound by the signature of the associated value.

MS-Typ-Decl-TypeAbs
t ̸= id

Γ ⊢A (type t = A.t) : λ(α < ⊤).(type t = α)

MS-Typ-Decl-TypeAbsId
Γ ⊢ A.Val : C

Γ ⊢A (type id = A.id) : λ(α < C ).(type id = α)

MS-Typ-Bind-AbsType
t ̸= id

Γ ⊢A (type t = A.t) : ∃♢(α < ⊤).(type t = α)

MS-Typ-Bind-AbsTypeId
Γ ⊢ A.Val : C

Γ ⊢A (type id = A.id) : ∃♢(α < C ).(type id = α)
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4. Subtyping is extended with a new rule MS-Sub-Bound for subtyping applied higher-
order bound variables (MS-Sub-Bound-Star is just a particular case of MS-Sub-Bound):

MS-Sub-Bound
φ < λ(α < τ ′).C ∈ Γ Γ ⊢ τ < τ ′

Γ ⊢ (φ τ) < C[α 7→ τ ]

MS-Sub-Bound-Star
α < C ∈ Γ

Γ ⊢ α < C

Besides, the two following rules for subtyping between functors are also extended with
additional premises to ensure the correct instantiation of abstract types:

MS-Sub-Sig-GenFct

Γ, α < τ ⊢ C < C′[α′ 7→ τ1] Γ, α < τ ⊢ τ1 < τ ′

Γ ⊢ () → ∃▼(α < τ ).C < () → ∃▼(α′ < τ ′ ).C′

MS-Sub-Sig-AppFct

Γ, α′ < τ ′ ⊢ C′
a < Ca[α 7→ τ1] Γ, α′ < τ ′ ⊢ C[α 7→ τ1] < C′ Γ, α′ < τ ′ ⊢ τ1 < τ

Γ ⊢ ∀(α < τ ).Ca → C < ∀(α′ < τ ′ ).C′
a → C′

Crucially, subtyping in Mω
<: remains transitive.

The proof then proceeds in two steps:

1. We first show that the Mω
<: maintains an stronger notion of wellformedness: identity

wellformedness. If Γ ⊢ sig type id = τ module Val : C end then Γ ⊢ τ < C (1). To do so,
we reinforce wellformedness for identity tags by changing the rule to

Γ ⊢ C : wf Γ ⊢ τ < C
Γ ⊢ sig type id = τ module Val : C end : wf

This defines a stronger wellformedness judgment Γ ⊢ C : wfid. We show that Mω
<: typing

judgments for modules and signatures always produce signatures that preserves identity-
tag wellformedness. That is, ⊢ Γ : wfid and either Γ ⊢ S : λ(α < C).C′ or Γ ⊢ M : ∃♢(α < C).C′

implies Γ, α < C ⊢ C′ : wfid.

Therefore, we may restrict Mω
<: derivations to use the identity-tag wellformedness in-

variant as long as we start with an identity-tag wellformed environment. By inversion
of wellformedness, this ensures the invariant (1).

2. Using the previous invariant, we then show that typability in Mω implies typability
in Mω

<:.

The proof of the first step proceeds by a simple induction over the typing derivation: identities
are either introduced fresh, in which case the bound is equal to the signature of the corre-
sponding Val-field, or obtained via subtyping, in which case we use transitivity of subtyping.

The rest of this section is dedicated to the proof of the second step. The only differences
between the original and the enhanced typing systems are the addition of subtyping bounds
and subtyping relations between the bounds. The core of the proof is to show that these are
actually not restrictive, which follows from two key facts: (1) subtyping is only done with a
right-hand side signature that comes from a source signature, i.e., that is the result of typing
a source signature; and (2) such signatures always contain the bounds of their identity tags
in at least one positive occurrence.
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Properties of elaborated signatures An Mω signature that the elaboration of a source
signature (referred to as TSS in the following) has actually a stronger property than being
just identity-wellformed. In a TSS, the bound of an identity tag α is exactly the signature C of
the first module occurrence with an identity tag α, and therefore, the bound always appears
explicitly in the signature. By contrast, in signatures that just identity-wellformed (like the
result of inference), there might be no module with the same signature as the bound, but only
supertypes.

First-order example Before diving into the proof by induction, we consider the typing of
a basic source signature S:

Γ ⊢ S : λ(α < Cα).C

There must be a subterm of C at a positive occurrence that is equal to:

sig module Val : Cα type id = α end

When subtyping this signature with another one in the enhanced system,

Γ ⊢ λ(α < Cα).C < λ(β < Cβ).C′

there is a new subtyping check between the bounds:

Γ ⊢ Cβ < Cα (1)

Whenever the subtyping between C′ and C succeeded in Mω, C′ features a subterm of the
form

sig module Val : C0 type id = β end

By subtyping, we have Γ ⊢ C0 < Cα. Thanks to the invariant of the first part of the proof, we
know that Γ ⊢ Cβ < C0. Transitivity of subtyping ensures (1). Hence subtyping also succeeds
in Mω

<:.

Proof by induction We prove by induction over the typing derivation that typing and
subtyping in Mω implies typing and subtyping in Mω

<:. Cases for unchanged rules, or rules
that just thread the bounds from the premise to the conclusion are immediate. The only
interesting cases are the three typing rules and two subtyping rules shown above have an
additional premise In each case we prove that this additional premise is actually implied by
the other premises.

Typing M-Typ-Sig-Con. The Mω derivation ends with the following rule.

M-Typ-Sig-Con
Γ ⊢ P : C Γ ⊢ S : λα.C′ Γ ⊢ C < C′[α 7→ τ ] Γ ⊢ τ : κ

Γ ⊢ (= P < S) : C′[α 7→ τ ]

For simplification of presentation, we assume that α is a single variable α. We show that we
can rebuild a Mω

<: derivation:

MS-Typ-Sig-Con
Γ ⊢ P : C

Γ ⊢ S : λ(α < τ ′ ).C′ Γ ⊢ C < C′[α 7→ τ ] (2) Γ ⊢ τ : κ Γ ⊢ τ < τ ′ (3)

Γ ⊢ (= P < S) : C′[α 7→ τ ]

All the premises but (3), hence including (2), follow by induction hypothesis. The remaining
goal is to show that the additional condition (3) actually follows from (2). For this purpose,
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we define [C]+, the positive declarations of a signature C, as the flattened list of declarations
in strict positive positions inside C (without entering inside generative functors or module
types), taken in the usual binding order, as follows:

[sig D end]+ = [D]+ (Structural signature)

[∀α.Ca → C]+ = ∀α.[C]+ (Applicative functor)

[() → _ ]+ = ∅ (Generative functor)

[module X : C]+ = (module X : C), [C]+ (Submodule declaration)

[D]+ = D (Other declarations)

Declarations inside applicative functors are universally quantified. A key observation is that
a signature in TSS form always contains the bound of its identity type among its positive
declarations:

Γ ⊢ S : λ(α < τ).C =⇒ (module Val : τ) ∈ [C]+ ∧ type id = α ∈ [C]+

Γ ⊢ S : λ(α < λβ.τ).C =⇒ ∀β.(module Val : τ) ∈ [C]+ ∧ ∀β.type id = (αβ) ∈ [C]+

Crucially, all the instantiations we consider feature a TSS C′ on their right-hand side. By con-
struction, subtyping between two signatures C and C′ implies subtyping between declarations
at any positive occurrence in C and its corresponding declaration in C′. Ignoring applicative
functors at first, this would give:

Γ ⊢ C < C′ =⇒ ∀D′ ∈ [C′]
+
. ∃D ∈ [C]+. Γ ⊢ D < D′

But there is a catch: the declarations D and D′ might be deep inside the signature, and
therefore the subtyping between them might be true only in an extended environment Γ′.
The correct statement is therefore:

Γ ⊢ C < C′ =⇒ ∀D′ ∈ [C′]
+
. ∃D ∈ [C]+,Γ′. Γ′ ⊢ D < D′ ∧ Γ′ < Γ

More specifically, there exists a declaration in the positive part of C that is a subtype of the
explicit bound of α, which appears in [C′]+. That is,

∃C0. Γ′ ⊢ module Val : C0 < module Val : τ ′

This implies Γ′ ⊢ C0 < τ ′. Using the invariant of the first step of the proof, we get Γ′ ⊢ τ < C0,
which implies (3) by transitivity of subtyping and weakening of the environment. This argu-
ment applies to the three typing rules. It extends to higher-order declarations with universal
quantification only adding universally quantified variables in the typing context Γ.

Typing rules MS-Typ-Mod-Ascr and MS-Typ-Mod-AppApp. The former is exactly the
same as the previous case. For the latter, the only change if that the bounded quantification
λ(α < τ ′).C′ is being replaced by ∀(α < τ ′).C′

a → C′.
Subtyping Rule MS-Sub-Sig-AppFct. The same argument as the one used by typing

rules applies, just with an extended context. Restricting again to a single type variable for
the sake of readability, we need to rebuild a derivation in Mω

<: that ends with:

MS-Sub-Sig-AppFct

Γ, α′ < τ ′ ⊢ C′
a < Ca[α 7→ τ1] (4) . . . Γ, α′ < τ ′ ⊢ τ1 < τ (5)

Γ ⊢ ∀(α < τ ).Ca → C < ∀(α′ < τ ′ ).C′
a → C′

where all the premises but (5) follow by induction hypothesis.
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As Ca is a TSS, we have

sig type id = α module Val : τ end ∈ [Ca]+

Therefore, since α is not free in τ ,

sig type id = τ1 module Val : τ end ∈ [Ca[α 7→ τ1]]
+

Correspondingly, we must have in C′
a, for some signature σ:

sig type id = τ0 module Val : σ end ∈ [C′
a]

+
(6)

Subtyping component by component, we have, since subtyping in non-variant on type fields
in general and on identity type fields in particular:

Γ, α′ < τ ′ ⊢ σ < τ ∧ τ1 = τ0

The identity-tag wellformedness invariant of (6) implies:

Γ, α′ < τ ′ ⊢ τ0 < σ

By transitivity of subtyping we get Γ, α′ < τ ′ ⊢ τ1 < τ , i.e.,. (5), as expected.
Rule MS-Sub-Sig-GenFct. We rebuild a derivation of the form

MS-Sub-Sig-GenFct

Γ, α < τ ⊢ C < C′[α′ 7→ τ1
]
(7) Γ, α < τ ⊢ τ1 < τ ′ (8)

Γ ⊢ () → ∃▼(α < τ ).C < () → ∃▼(α′ < τ ′ ).C′

The proof is similar to the previous case where (7) follows by induction and (8) follows from
(7) and the fact that C′ is in TSS-form.

This completes the proof.

3.3 Rebuilding Source Signatures

In this section, we present a reverse translation from Mω signatures back into the source syntax,
called anchoring. It a partial inverse of signature elaboration. This translation is necessarily
incomplete as some inferred signatures cannot be expressed in the less expressive source
syntax. Anchoring relies on identity tags, and therefore assumes that we have tagged source
programs as described in Section 3.2 prior to type checking. That is, anchoring translates
tagged signatures back into source (hence untagged) signatures.

In Section 3.3.1, we detail the three expressiveness gaps of the source syntax, which gives us
three anchoring conditions, associated with three new typechecking errors if those conditions
are violated. We argue that these guidelines lead to more understandable signature avoidance
error messages. In Section 3.3.2, we present an anchoring algorithm. In Section 3.3.3, we
state and prove the properties of this algorithm, which shines a new light on the differences
in the way type-sharing is expressed between Mω and the source syntax.

3.3.1 The Expressiveness Gaps of the Source Syntax

In this section we introduce three anchoring conditions. For each, we show examples of an
Mω-signature meting the condition and we detail the error cases when the condition is not met.
Those error cases constitute a new form of typechecking error that is more fine grained than
a simple “avoidance” error. Overall, the anchoring conditions ensure that an Mω-signature
is the result of the elaboration of some source signature, with an additional constraint for
functor applications. We state three anchoring conditions for pedagogical purposes, but the
third one subsumes the first two.

For the sake of readability, we do not display all module identities in the examples, only
the ones that are relevant.



3.3. REBUILDING SOURCE SIGNATURES 69

Abstract Type Fields

Structural information and introduction of types A first key insight is the difference
in the source syntax between the declaration of a manifest type (type t = u) and that of
an abstract type (type t = A.t). An abstract type declaration type t = A.t in a covariant
position effectively creates a new abstract type (introducing an existential quantifier in Mω)
and adds a type field t to the signature. By contrast a manifest type definition type t = u

only states structural information—adding a field t to refer to the existing type u.
Therefore, in the source syntax, the structural information (name and position of fields)

determines the scope of abstract types. Conversely, the Mω syntax separates the introduction
of new abstract types from the introduction of fields by using explicit quantifiers. In particular,
they may mention an abstract type without (or before) having a type declaration that refer to
it. Overall, anchoring is possible if the structural and scoping information happen to coincide,
i.e., if there are type declarations for each type variable that “introduce” the variable in the
right scope. As detailed in Section 2.1.1, new scopes are introduced by generative functors
and module type definitions. This gives the following first anchoring guideline:

Anchoring Condition 1

The first occurrence of an abstract type variable α must be a type declaration that is:
(1) of the form type t = α, (2) in a strictly positive position, and (3) in the same scope
as the binder.

If such type declaration exists, its called the anchoring point of α. If one of the conditions
is not met, the Mω signature cannot be anchored. This leads to the following error cases:

1. If the first occurrence is not a type field (as on the left-hand side), or if does not contain
exactly α (as on the right-hand side):
1 ∃▽α.sig val x : α . . . end 1 ∃▽α.sig type t = α× bool . . . end

2. If the first occurrence is not in a (strictly) positive position, used in a functor parameter
for instance:
1 ∃♢α.sig module F : (sig type t = α end) → (sig . . . end) end

3. The first occurrence is not in the same scope as the binder, either inside a generative
functor or a module type (we detail the treatment of applicative functor later in this
section):
1 ∃♢α.module G : () → sig type t = α end
2 ∃♢α.module type T = sig type t = α end

Related notions This notion is linked to type locators of ?Rossberg and Dreyer [2013]: the
locator is the original anchoring point of α. A key mechanism of anchoring is to re-discover
a new locator, as the original one may have been lost. The notion of anchoring point is also
closely related to the notion of type variable roots in Rossberg et al. [2014]: the anchoring
point of α is a root for α, but the converse is not necessarily true. Type roots are used to
show the decidability of type-checking, but do not have to be the first occurrence.

Example 3.3.1. In the following Mω signature (left-hand side), the first occurrence of α is a
type declaration that can serve as an anchoring point. Therefore, we can anchor the signature
to the right-hand-side source signature:
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1 ∃♢α.module M : sig
2 type t = α
3 val x : α
4 type u = α× int

5 end

1 moduleM : sigA
2 type t = A.t
3 valx : A.t
4 typeu = A.t× int
5 end

The type declaration type t = A.t is the anchoring point of α.

Module Identities

The source syntax can only express identity sharing between modules via transparent sig-
natures (= P < S). However, a transparent signature (= P < S) is wellformed only if the
signature of the path P is a subtype of S. This forces all modules sharing the (same) identity
of P to have a signature that is a subtype of (the signature of) the module at P . Therefore,
identity sharing is tied with subtyping conditions between the signature of each occurrence
and the signature of the first occurrence. By contrast, Mω signatures can express identity
sharing regardless of the associated signatures.

Anchoring Condition 2

The first occurrence of an identity tag variable αid must be at a module binding of
the form module X : (αid, C), in a strictly positive position, and in the same scope as
the binder. Besides, all further occurrences of αid, of the form (αid, C′), must satisfy a
subtyping criterion between C and C′.

As a consequence of this condition, anchoring can fail even if all variables have an anchoring
point as their first occurrence: we might discover latter in the signature that subtyping
conditions are not met. In addition to the three error cases that are similar to type variables,
we have a new error case: if one of the following occurrences of the identity tag variable is
associated with a signature that is not a subtype of the one at the anchoring point:
1 ∃♢αid.module M : sig
2 module X1 : (αid, sig end)
3 module X2 : (αid, sig type t = int end)
4 end

Here, the signature of X1 is not a subtype of the one of X2: sig end ≮ sig type t = int end

Example 3.3.2. In the following Mω signature (left-hand-side), the first module with the
identity tag serves as the anchoring point for the identity variable αid.
1 ∃♢αid, α.module M : sig
2 module X1 : (αid, sig type t = α end)
3 module X2 : (αid, sig end)
4 end

1 moduleM : sigA
2 moduleX1 : sigA type t = A.t end
3 moduleX2 : (= X1 < sig end)
4 end

All other occurrences of αid (here, only at the module declaration of X2) validate the subtyping
condition, as we have: sig end < sig type t = α end

Higher-order Abstract Types

Let us consider an abstract type t inside an applicative functor:
1 moduleF : (Y : S) → sigA . . . type t = A.t . . . end

This type field t is reachable by a path with a functor application, of the form F (X).t.
Therefore, the type does not act exactly as an higher-order type, but is restricted to a certain
domain that is limited by the signature of the parameter S. Yet Mω uses a normal higher-
order abstract variable φ to model this type declaration, and φ can be applied to any type
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argument (without restriction). For anchoring, we need to replace occurrences of φ by an
applicative paths of the form F (X).t, which will introduce subtyping conditions (between the
signature of X and S).

Anchoring Condition 3 (1/2)

The first occurrence of an higher-order abstract type φ must be a type declaration that
is: (1) of the form type t = φ(α), (2) where α is exactly the set of universally quantified
variables in the environment in the current scope, (3) in a strictly positive position and
(4) in the same scope as the binder. Besides, all further occurrences of φ, of the form φ(τ),
must be the result of the elaboration of a (well-formed) path, of the form F (X).t.

Again, this introduces new error cases if the conditions are not met. If an higher-order
abstract type does not have an anchoring point, we say that we have a “lost functor” anchoring
error. Besides the three conditions (first occurrence, strict positivity, same scope) that are
similar to base type variables, we have:

1. If the first occurrence of φ is a type declaration of the form type t = φ(τ), where τ is
not exactly the set of universally quantified variables, it means that φ originates from
a functor with a different arity, and we have an error:
1 ∃♢ φ, αid.sig
2 module X : sig type t = bool end
3 module F : ∀α.(α, sig end) → sig type t = φ(α, αid) end
4 type t = φ(αid, αid)
5 end

Here, the variable φ was introduced by a functor that took two parameters, and it only
remains a partial application φ(α, αid) in the signature. Even if the rest of the signature
only uses φ in a way that could be emulated using F , i.e., the last field could technically
be anchored as type t = F (X).t, we refuse to do so and throw an error, as it is a form
of over-abstraction.

2. If we have a suitable anchoring point, there might be occurrences further down the
signature that cannot be expressed as paths to the anchoring point, due to the subtyping
conditions.
1 ∃♢ φ, αid.sig
2 module F : ∀α.(α, sig val x : int end) → sig type t = φ(α) end
3 module X : (αid, sig val x : bool end)
4 type t = φ(αid)
5 end

Here, the type declaration cannot be anchored, as the path F (X).t would be ill-formed.
Indeed, the signature of X is not a subtype of the functor’s parameter, as they differ
on the type of the value field x. Such situation can appear by inference, when φ was
introduced by a functor that was more general than F , i.e., which parameter’s signature
did not contain a field x.

Relation with the other anchoring conditions The first anchoring condition is a sub-
case of this one, restricted to base types (of the base kind ⋆). The subtyping condition of the
second anchoring condition are similar to the one of this condition. This comes from the fact
transparent ascription can be encoded as functor application: for each signature S, we could
introduce a dummy functor FS : (Y : S) → Y . Each transparent ascription (= P < S) could
be obtained as the result of the application FS(P ).

Example 3.3.3. In the following Mω-signature (left-hand side), the anchoring conditions are
met. All occurrences of φ can be anchored as paths to the anchoring point. Those paths can
contain functor parameters, as displayed by F2.
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1 ∃▽ φ, αid.module M : sig
2 module F1 :
3 ∀αid.(αid, sig end) →
4 sig type t = φ(αid) end
5 module X : (αid, sig val x : int end)
6 type t = φ(αid)
7 module F2 :
8 ∀αid.(αid, sig val x : bool end) →
9 sig type t = φ(αid) end

10 end

1 moduleM : sigA
2 moduleF1 :
3 (Y : sig end) →
4 sigB type t = B.t end
5 moduleX : sig val x : int end

6 type t = A.F1(A.X).t
7 moduleF2 :
8 (Y : sig val x : bool end) →
9 sig type t = A.F1(Y ).t end

10 end

Disabling functor applications “out of thin air” As discussed in Section 1.3.3, we want
to prevent the anchoring from inventing paths with functor applications that never appeared
in the source, just for referring to abstract types that have lost their original path. We say
that This would be quite surprising, if not misleading, as it suggests a computation that will
never happen. Therefore, we extend the third anchoring condition:

Anchoring Condition 3 (2/2)

The anchoring point of an higher-order type should be original, either in the functor that
introduced it or in an alias of it.

To distinguish original anchoring points, we will need to slightly instrument the typing rules,
as this information cannot be reconstructed just from types.

3.3.2 The Anchoring Process

In this section we present an algorithm that produces a source signature given an Mω one,
when the anchoring conditions are met. For pedagogical purposes, it is split in two steps: we
first translate Mω signatures into tagged source signatures, before removing tags to obtain
source signatures. Both steps are presented as relations, although they are deterministic.
We first explain some instrumentation added to the typing judgment: scope barriers, arity
delimiters, type variables flavor, and application marks.

Instrumenting the typing judgment (1/4) First, we extend the grammar of environ-
ments with scope barriers: we write Γ ·Γ′ for an environment that behaves as Γ,Γ′ but with
a barrier between Γ and Γ′ and let ∆ range over environments without barriers. Hence, by
writing Γ ·∆, we mean that ∆ is the part of the environment right after the rightmost mark.
This is used to indicate scopes (adding a barrier) and prevent anchoring of types that have
been introduced in a larger scope. Marks are introduced in the context by typing rules that
open scopes:

M-Typ-Sig-GenFct
Γ · ⊢ M : λα.C

Γ ⊢ () → M : () → ∃▼α.C

M-Typ-Decl-ModType
Γ · ⊢ S : λα.C

Γ ⊢A (module type T = S) : (module type T = λα.C)

M-Typ-Mod-GenFct
Γ · ⊢ M : ∃▼α.C

Γ ⊢ () → M : () → ∃▼α.C

M-Typ-Bind-ModType
Γ · ⊢ S : λα.C

Γ ⊢A (module type T = S) : (module type T = λα.C)

Instrumenting the typing judgment (2/4) We also instrument Rule M-Typ-Mod-
AppFct to mark skolemization steps, writing β′⟨α⟩ instead of β′(α) but to mean the same,
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so that anchoring may pattern-match on list of lists of arguments rather than on a flat list:

M-Typ-Mod-AppFct
Γ ⊢ Sa : λα.Ca Γ, α, (Y : Ca) ⊢ M : ∃▽β.C

Γ ⊢ (Y : Sa) → M : ∃▽β′.∀α.Ca → C
[
β 7→ β′⟨α⟩

]
This makes the treatment of arity of functors easier.

Instrumenting the typing judgment (3/4) When adding new variables in the environ-
ment, we add a flag to indicate if they come from an universal quantification. We write ?α
to indicate that α where universally quantified and we write !α otherwise (for existential or
lambda quantification). This is done only so we can define operator args(∆), which returns
a list (of lists) of universally quantified variables. For the sake of readability, the flags are
written only when relevant for the context. Alternatively, we could also have identified uni-
versally quantified variables by the fact that they immediately precede a functor parameters
in ∆. We added flags instead because they also simplify the presentation of the proofs in
Section 3.3.3.

Instrumenting the typing judgment (4/4) Finally, we modify the typing rule for functor
application M-Typ-Mod-AppApp to mark higher-order abstract types, in order to identify
original anchoring points: type declarations obtained by a functor application are marked
as not original, while aliasing a functor copies its type declaration unmarked. Technically,
we use a syntactic mark τ † on types, which can be seen as the introduction of a postfixed
constant † that behaves as λα.α. That is, τ † syntactically differ from τ but really means τ .
Marks ignored by subtyping rules that may freely erase them. We write C† for the signature C
where all type declarations type t = τ of the structure and substructures have been rewritten
into type t = τ †—but the marking does not go inside the body of functors nor inside module
types. Therefore, we only change the resulting signature of the rule M-Typ-Mod-AppApp to
a marked signature C′†[α 7→ τ ]:

M-Typ-Mod-AppApp
Γ ⊢ P : ∀α.Ca → C Γ ⊢ P ′ : C′ Γ ⊢ C′ < Ca[α 7→ τ ]

Γ ⊢ P (P ′) : C†[α 7→ τ ]

From Mω Signatures to Tagged Source Signatures

The algorithm proceeds by visiting the Mω signature in left-to-right depth-first order. Along
the way, it removes all universal and existential quantifiers from the Mω signature and replaces
occurrences of the corresponding abstract type variables by either a self-reference (at its
anchoring point) or a path referring to its anchoring point. An anchoring map θ from Mω

types τ to qualified types P.t is built and updated during the visit. The algorithm is defined
by mutually recursive judgments :

• Environment anchoring Γ ↪→ θ checks that θ is a correct anchoring map for Γ.

• Signature anchoring Γ;θ ⊢ C ↪P−→ S : θ, given a path P (which is actually shallow, i.e.,
taking one of the three forms Y , A.X, or A.Val(Y )), translates the Mω signature C into
a tagged source signature S and produces a (possibly empty) local anchoring map θ of
the abstract types anchored in S, prefixed by P . We also define declaration anchoring
Γ ; θ ⊢ D ↪

A−→ D : θ, with a self reference A in place of the path P .

• Local anchoring Γ;θ ⊢ C ↪−→ S : (α 7→ _ ) just checks that signature C can be translated
into S producing a local map of domain α that is ignored afterwards.



74 CHAPTER 3. M ω

• Type anchoring Γ ; θ ⊢ τ ↪→ u translates the Mω type τ to a source type u, replacing
each Mω variable by a path to its anchor, as described in θ.

The whole set of rules is given in Figure 16. The key rules are those that extend, update,
or use the anchoring map to reconstruct source type expressions. We start with a simple
example:

Example 3.3.4. To illustrate the anchoring process, we consider the Mω signature on the
left-hand side. At each line, we give the corresponding anchoring map, used to produce the
source signature on the right-hand side.
1 ∃▽α, β.sig
2 type t = α
3 module X : sig
4 type u = β
5 val x : β × α
6 end
7 val y : β × α
8 end

∅
(α 7→ A.t)
(α 7→ A.t)
(α 7→ A.t) ⊎ (β 7→ B.u)
(α 7→ A.t) ⊎ (β 7→ B.u)
(α 7→ A.t) ⊎ (β 7→ A.X.u)
(α 7→ A.t) ⊎ (β 7→ A.X.u)

1 sigA
2 type t = A.t
3 moduleX : sigB
4 typeu = B.t
5 valx : B.t×A.t
6 end
7 val y : A.X.u×A.t
8 end

The anchoring map is extended at line (2) and (4) when the anchoring points for α and β
are found. The map is updated at line (6) when exiting the submodule X: the path for the
anchoring point of β is prefixed by X.

Anchoring points A new anchoring point is introduced when reaching a type declaration
of the form type t = α where α is not anchored yet, i.e., not in the domain of θ. A simplified
rule for first-order types is:

α /∈ dom(θ) α ∈ ∆ args(∆) = ∅

Γ ·∆ ; θ ⊢ type t = α ↪
A−→ type t = A.t : (α 7→ A.t)

We ensure that the type α was introduced after the left-most barrier, by requiring α ∈ ∆, and
check that the type declaration has not been made inside an applicative functor by requiring
that the environment ∆ contains no universally quantified types. The check for positivity is
made when exiting a functor definition, it is not visible here. We then return the singleton
map (α 7→ A.t). The general version of the rule A-Decl-Anchor considers a declaration for
a possibly higher-order unmarked type expression φ:

A-Decl-Anchor
φ /∈ dom(θ) φ ∈ ∆ args(∆) = α1 ; . . . αn

Γ ·∆ ; θ ⊢ type t = φ⟨α1⟩ . . . ⟨αn⟩ ↪
A−→ type t = A.t : (φ 7→ A.t)

This rule only applies when φ is both unmarked and applied to exactly the sequence args(∆)
of abstract types in ∆ (which necessarily follow φ). Anchoring fails if one of the conditions
does not hold. The process could be made more permissive or more restrictive by tweaking
this rule.

Updates The anchoring map θ is updated in the two places where access paths to types must
be changed as we exit scopes: (1) in Rule A-Sig-StrPath, locally anchored abstract types are
made available through the path P and (2) in Rule A-Sig-FctApp, paths to anchored types
of θ are point-wise abstracted over the functor parameter Y in the returned map λY.θ. The
list α is marked as existentially quantified in the left-hand side premise (when anchoring Ca)
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A-Env-Decl

Γ ; θ ⊢ D ↪
A−→ D : θ′

Γ, A.D ↪→ θ ⊎ θ

A-Env-Arg

Γ ·α ; θ ⊢ Ca ↪
Y−→ Sa : θa dom(θa) = α

Γ, α, (Y : C) ↪→ θ ⊎ θa

A-Env-Abs
Γ ↪→ θ

Γ, α ↪→ θ

(a) Anchoring of environment

A-Sig-StrPath

Γ ; θ ⊢ D ↪
A−→ D : θ A /∈ Γ

Γ ; θ ⊢ sig D end ↪P−→ sigA D end : θ[A 7→ P ]

A-Sig-StrNone

Γ ; θ ⊢ D ↪
A−→ D : θ A /∈ Γ dom(θ) = α

Γ ; θ ⊢ sig D end ↪−→ sigA D end : (α 7→ _ )

A-Sig-FctGen
Γ ·α ; θ ⊢ C ↪−→ S : (α 7→ _ )

Γ ; θ ⊢ () → ∃▼α.C ↪A.Val−−−→ () → S : ∅

A-Sig-FctApp

Γ ·α ; θ ⊢ Ca ↪
Y−→ Sa : θa dom(θa) = α

Γ, α, Y : Ca ; θ ⊎ θa ⊢ C ↪A.Val(Y )−−−−−−→ S : θ

Γ ; θ ⊢ ∀α.Ca → C ↪A.Val−−−→ (Y : Sa) → S : λY.θ

(b) Anchoring of signatures

A-Decl-Val
Γ ; θ ⊢ τ ↪→ u

Γ ; θ ⊢ val x : τ ↪
A−→ (valx : u) : ∅

A-Decl-Anchor
φ /∈ dom(θ) φ ∈ ∆ args(∆) = α1 ; . . . αn

Γ ·∆ ; θ ⊢ type t = φ⟨α1⟩ . . . ⟨αn⟩ ↪
A−→ type t = A.t : (φ 7→ A.t)

A-Decl-Type
Γ ; θ ⊢ τ ↪→ u

Γ ; θ ⊢ type t = τ ↪
A−→ type t = u : ∅

A-Decl-Mod

Γ ; θ ⊢ C ↪A.X−−−→ S : θ

Γ ; θ ⊢ module X : C ↪A−→ moduleX : S : A.θ

A-Decl-Empty

Γ ; θ ⊢ ∅ ↪
A−→ ∅ : ∅

A-Decl-ModType
Γ, α ; θ ⊢ C ↪−→ S : (α 7→ _ )

Γ ; θ ⊢ (module type T = λα.C) ↪A−→ module type T = S : ∅

A-Decl-Seq

Γ ; θ ⊢ D ↪
A−→ D : θ1 Γ, A.D ; θ ⊎ θ1 ⊢ D ↪

A−→ D : θ2

Γ ; θ ⊢ D,D ↪
A−→ D, D : θ1 ⊎ θ2

(c) Anchoring of declarations

A-Type-Application
τ = φ⟨τ1 . . . ⟩ . . . ⟨τn . . . ⟩ θ(φ) = λYk. . . . λYn. P.t

∀i ∈ Jk, nK . Γ ; θ ⊢ τi ↪→ Pi.id u = θ(φ)(Pk) . . . (Pn) Γ ⊢ u : τ

Γ ; θ ⊢ τ ↪→ u

(d) Anchoring of types

Figure 16: Anchoring rules



76 CHAPTER 3. M ω

and universally quantified in the right-hand side one (when anchoring C).

A-Sig-StrPath

Γ ; θ ⊢ D ↪
A−→ D : θ A /∈ Γ

Γ ; θ ⊢ sig D end ↪P−→ sigA D end : θ[A 7→ P ]

A-Sig-FctApp

Γ · !α ; θ ⊢ Ca ↪−→ Sa : θa dom(θ) = α Γ, ?α, Y : Ca ; θ ⊎ θa ⊢ C ↪A.Val(Y )−−−−−−→ S : θ

Γ ; θ ⊢ ∀α.Ca → C ↪A.Val−−−→ (Y : Sa) → S : λY.θ

By contrast, the anchoring map of the body of a generative functor is thrown away (Rule
A-Sig-FctGen), as generative functors cannot appear in paths, 1 and a barrier is added in
the premise, as the body cannot capture types defined outside of the functor.

Path resolution Finally, the anchoring map is used for anchoring an Mω-types τ into a
qualified type – which requires finding a suitable path to access the anchoring point – by the
following rule:

A-Type-Application
τ = φ⟨τ1 . . . ⟩ . . . ⟨τn . . . ⟩ θ(φ) = λYk. . . . λYn. P.t

∀i ∈ Jk, nK . Γ ; θ ⊢ τi ↪→ Pi.id u = θ(φ)(Pk) . . . (Pn) Γ ⊢ u : τ

Γ ; θ ⊢ τ ↪→ u

Here, we consider types stripped of their marks, e.g., by reducing φ† to φ. The rule A-Type-
Application applies when τ is of the form φ⟨τ1 . . . ⟩ . . . ⟨τn . . . ⟩ and θ(φ) is a (mathematical)
function of the form λYk. . . . λYn.P.t. Types τk to τn may only be resolved to identity tags
Pk.id to Pn.id. Then, theThis rule is designed to allow anchoring of a type τ that is abstract
over a certain number of parameters (here, n − k + 1) even if τ is actually applied to more
parameters (here, n). This comes from the fact that source signatures do not display the
depth of enclosing applicative functors. The resulting type u is the path (resulting from the
mathematical application) θ(φ)(Pk) . . . (Pn). However, u must be re-typechecked to ensure
that paths occurring in τ only contain valid functor applications2 and that it returns the same
type as the input type τ .

Example 3.3.5. We illustrate the anchoring process of a type inside an applicative functor.
We give the corresponding anchoring map at the end of the line. For the sake of readability,
we do not write the identity of the functor (nor its body) and we write tagged signatures with

1Similarly, Rule A-Decl-ModType only checks for anchorability of the body of a module type, and
then discards the anchoring map, since module types cannot appear in paths.

2Indeed, it can happen that a module X is lost, while a transparent ascription X’ is kept. The types resulting
from a functor application F(X).t may not be anchorable as F(X’).t if X’ lacks certain fields.
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pairs.

1 ∃▽φ, αid1 , αid2 .sig
2 module F :
3 ∀αid, α.(αid, sig type t = α end) →
4 sig type t = φ(α) end
5

6 module X1 : (αid1 , sig type t = int end)
7 module X2 : (αid2 , sig type t = bool end)
8 type t = φ ⟨αid1 , int⟩
9 type u = φ ⟨αid2 , bool⟩

10 end

∅

∅

(αid 7→Y.id, α 7→Y.Val.t)

(αid 7→Y.id, α 7→Y.Val.t, φ 7→C.t)

(φ 7→λY.A.F (Y ).t)

(φ 7→λY.A.F (Y ).t, αid1 7→A.X1.id)

(φ 7→λY.A.F (Y ).t, αid1 7→A.X1.id, αid2 7→A.X2.id)

(φ 7→λY.A.F (Y ).t, αid1 7→A.X1.id, αid2 7→A.X2.id)

(φ 7→λY.A.F (Y ).t, αid1 7→A.X1.id, αid2 7→A.X2.id)

1 sigA
2 moduleF : (Y : sigB type t = B.t end) → sigC type t = C.t end
3 moduleX1 : sigA1

type id = A1.id module Val : (sig type t = int end) end
4 moduleX2 : sigA2

type id = A2.id module Val : (sig type t = bool end) end
5 type t = A.F (A.X1).t
6 typeu = A.F (A.X2).t
7 end

We have the following steps:
3. When anchoring the body of the functor, we have an anchoring of the universally quan-

tified variables αid, α.
4. Then, an anchoring point for φ is found, initially bound to the local name C.t.
5. When exiting the functor, the anchoring of αid, α is thrown, as the variables are no longer

accessible, and the anchoring of φ is updated to a parameterized path λY.A.F (Y ).t
6. The identity tag αid1 is anchored to X1.id
7. The identity tag αid2 is anchored to X2.id

Finally, the anchoring map is used at lines (8) and (9) to rebuild the qualified types.

Untagging

The first step of anchoring returns a tagged source signature S. It remains to remove the tags,
i.e., to return a signature S′ with the id and Val fields stripped of S, recursively, but expressing
the same sharing using concrete signatures. This is defined as a judgment Γ ⊢ S ↪→ S′. The
two interesting rules are for untagging structural signatures:

U-Sig-Fresh
Γ ⊢ S ↪→ S′

Γ ⊢ Tag[S] ↪→ S′

U-Sig-Con
Γ ⊢ S ↪→ S′ Γ ⊢ S′ : C′ Γ ⊢ P : C Γ ⊢ C < C′

Γ ⊢ sigA type id = P.id module Val : S end ↪→ (= P < S′)

When the identity type declaration is an abstract type declaration Tag[S] (Rule U-Sig-Fresh),
i.e., of the form sigA type id = P.id module Val : S end, the identity of the module is fresh,
hence the anchored signature of the value is returned directly. Otherwise (Rule U-Sig-Con),
the identity type declaration is concrete, i.e., of the form P.id; that is, the signature of a
module that shares its identity with the module P . We retrieve the Mω-signature C of the
module P and check that it is a subtype of the Mω-signature C′ of the untagging S′ of S, so
as to ensure that the concrete signature (= P < S′) to be returned is valid. The other rules,
omitted here, only remove the access to Val-fields and inductively call untagging.

3.3.3 Properties of Anchoring

In this section we state and prove the meta-theoretic properties of anchoring.
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Anchoring of elaborated signatures Conceptually, anchoring and elaboration of signa-
tures are inverse of each other, which we could write as “[Elaboration ◦ Anchoring = Id]”.
There is however a caveat, as typechecking is not injective: several source signatures can
express the same type sharing information. Therefore, we may quotient source signatures by
the equivalence induced by Mω typing (using the normal type equivalence of Mω). We define
the equivalence of source signatures as:

Γ ⊢ S ≈ S′ ≜ Γ ⊢ S : λα.C ∧ Γ ⊢ S′ : λα.C′ ∧ λα.C ≡ λα′.C′.

Anchoring produces a signature where all type equalities have been aggressively inlined.

Theorem 2: Elaboration ◦ Anchoring = Id

The elaboration of source signatures produces anchorable signatures. Given a source
signature S, typing environment Γ and anchoring map θ such that:

Γ ⊢ S : λα.C ∧ Γ ↪→ θ

Then, there exists a source signature S′ and an anchoring map θ′ such that:

Γ ·α ; θ ⊢ C ↪−→ S′ : (α 7→ _ )

The signature S′ might no be syntactically equal to S, but they are in the same equivalence
class with regard to Mω typing:

Γ ⊢ S ≈ S′

Elaboration of anchored signatures The other direction would be to show that, starting
with a Mω signature C, finding an anchored signature S and elaborating it back to Mω would
give a signature C′ that is equivalent to C, the signature we started with. This could be seen
as “Anchoring ◦ Elaboration = Id”. Yet, there is a subtlety. Mω signatures can express the
fact that they are inside an applicative functor, as their abstract types are applied to a certain
set of universally quantified type variables. This does not appear in source signatures, which
are the same whatever the number of enclosing applicative functors. Therefore, we only have
an equivalence “up to skolemization”.

Theorem 3: Anchoring ◦ Elaboration ≃ Id

Given a Mω signature C, a source signature S, a typing environment and anchoring maps
such that:

Γ ·∆ ; θ ⊢ C ↪−→ S : θ ∧ dom(θ) = α ∧

Typing back the anchoring gives the original signature, up to re-skolemization of current
universally quantified types.

Γ ↪→ θ =⇒ Γ ⊢ S : λβ.C′ ∧ C′[β 7→ α(args(∆))
]
= C

Untagging Finally, the untagging phase is not surprising, and is the inverse of tagging.
The result relies on a notion of tag-wellformed source signatures: signatures that have identity
tags at each module binding and functor body. This is trivially maintained by typing and
anchoring. We have the following result:
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Theorem 4: Untagging

Given a tag-wellformed signature S, untagging it and tagging it back yields an equivalent
signature:

Γ ⊢ S ↪→ S′ =⇒ Γ ⊢ S ≈
q
S′

y

The rest of this section is dedicated to the corresponding proofs.

Proof of Theorem 3

We show the result by mutual induction on the anchoring of signatures and declarations. The
induction hypothesis is :

Γ ·∆ ; θ ⊢ C ↪−→ S : θ ∧ dom(θ) = α ∧ Γ ↪→ θ

=⇒ Γ ·∆ ⊢ S : λβ.C′ ∧ C′[β 7→ α(args(∆))
]
= C

Γ ·∆ ; θ ⊢ D ↪
A−→ D : θ ∧ dom(θ) = α ∧ Γ ↪→ θ

=⇒ Γ ·∆ ⊢ D : λβ.D′ ∧ D′[
β 7→ α(args(∆))

]
= D

The proof is by structural induction on the anchoring derivation.

• A-Sig-FctGen: The conclusion of the rule is the signature anchoring judgment

Γ ·∆ ; θ ⊢ () → ∃▼α.C ↪A.Val−−−→ () → S : ∅

Since the domain of the local map is empty, we just have to show

Γ ·∆ ⊢ () → S : () → ∃▼α.C (1)

The premise of the rule is Γ ·∆ · !α ; θ ⊢ C ↪−→ S : (α 7→ _ ). By induction hypothesis, we
have Γ ·∆ ⊢ S : λβ.C′ (2) and C′[β 7→ α

]
= C, since args(!α) is empty, that is λβ.C′ =

λα.C.

Then (1) follows by M-Sig-GenFct applied to (2).

• A-Sig-FctApp: The rule is

Γ ·∆ · !α ; θ ⊢ Ca ↪
Y−→ Sa : θa (1) Γ ·∆, ?α, Y : Ca ; θ ⊎ θa ⊢ C ↪A.Val(Y )−−−−−→ S : θ (2)

Γ ·∆ ; θ ⊢ ∀α.Ca → C ↪A.Val−−−→ (Y : Sa) → S : λY.θ

with dom(θa) = α. By IH applied to (1), we have Γ ·∆ ⊢ Sa : λα.Ca (3) since args(α, α)
is empty. Let γ be dom(θ). By IH applied to (2), we have Γ ·∆, ?α, Y : Ca ⊢ S : λβ.C′ (4)
with C′[β 7→ γ(args(∆), α))

]
= C (5), since args(∆, ?α) is equal to args(∆), α. By rule

M-Typ-Sig-AppFct applied to (3) and (4), we have:

Γ ·∆ ⊢ (Y : Sa) → S : λβ′.∀α.Ca → C′
[
β 7→ β′(α)

]
It remains to check:(

∀α.Ca → C′
[
β 7→ β′(α)

])[
β
′ 7→ γ(args(∆))

]
≡ ∀α.Ca → C

which follows from (5) by composition of substitutions, since β′ does not occur free
in Ca.
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• A-Sig-StrPath and A-Sig-StrNone are immediate by induction.

• For A-Decl-Val, A-Decl-Type, we may easily show that Γ;θ ⊢ τ ↪→ u implies Γ ⊢ u : τ .

In both cases, the conclusion is of the form Γ ; θ ⊢ D ↪
A−→ D : ∅, it suffices to show

Γ ·∆ ⊢ D :D (1). In the case of A-Decl-Val, the conclusion is Γ ; θ ⊢ val x : τ ↪
A−→

(valx : u) : ∅ and the premise is Γ ⊢ u : τ , which implies Γ ⊢ u : τ . Then, (1) follows by
M-Typ-Decl-Val.

The case of A-Decl-Type is similar.

• A-Decl-Mod, A-Decl-ModType are immediate by induction.

• A-Decl-Anchor: the conclusion of the rule is:

Γ ·∆ ; θ ⊢ type t = φ⟨α1⟩ . . . ⟨αn⟩ ↪
A−→ type t = A.t : (φ 7→ A.t)

By Rule M-Typ-Decl-TypeAbs, we have Γ ·∆ ⊢ (type t = A.t) : λα.type t = α. From
the premises, we know that φ ∈ ∆ and args(∆) = α1 ; . . . αn. Hence, (type t =
α)[φ 7→ φα1 ; . . . αn] is equal to type t = φ⟨α1⟩ . . . ⟨αn⟩, which is exactly the decla-
ration we started with.

• A-Decl-Seq: The Rule is :

A-Decl-Seq

Γ ; θ ⊢ D1 ↪
A−→ D1 : θ1 Γ, A.D1 ; θ ⊎ θ1 ⊢ D2 ↪

A−→ D2 : θ2

Γ ; θ ⊢ D1,D2 ↪
A−→ D1, D2 : θ1 ⊎ θ2

Writing the domain of θ1 ⊎ θ2 as dom(θ1 ⊎ θ2) = (α1, α2), we need to show that there
exists D′

1 and D′
2 such that:

Γ ·∆ ⊢ D1, D2 : λα1, α2.D′
1,D′

2 (1)

D′
1,D′

2

[
β1, β2 7→ α1(args(∆)), α2(args(∆))

]
= D1,D2 (2)

We have by induction hypothesis:

Γ ·∆ ⊢ D1 : λβ1.D′
1 ∧ D′

1

[
β1 7→ α1(args(∆))

]
= D1

Γ ·∆, A.D ⊢ D2 : λβ2.D′
2 ∧ D′

2

[
β2 7→ α2(args(∆, A.D))

]
= D2

We introduce D′′
2 = D′

2

[
α1(args(∆)) 7→ β1

]
.

– Proof of (1)
We use the Rule M-Typ-Decl-Seq:

M-Typ-Decl-Seq
Γ ⊢A D1 : λα1.D1(3) Γ, α1, A.D1 ⊢A D2 : λα.D2(4)

Γ ⊢A D1, D2 : λα1 α. D1,D2

The first premise (3) is immediate by induction hypothesis. For the second one
(4), we show by induction that :

Γ ·∆, A.D1 ⊢ D2 : λβ2.D′
2 =⇒ Γ ·∆, β1, A.D′

1 ⊢ D2 : λβ2.D′′
2

– Proof of (2)
By definition, we have

args(∆, A.D) = args(∆)
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As the declaration D′
1 is wellformed in an environment that does not contain the

β2, substituting for them does not change anything. Therefore, we have:

D′
1,D′′

2

[
β1, β2 7→ α1(args(∆)), α2(args(∆))

]
= D′

1

[
β1 7→ α1(args(∆))

]
, (D′′

2

[
β1 7→ α1(args(∆))

]
)
[
β2 7→ α2(args(∆))

]
= D1,D′

2

[
β2 7→ α2(args(∆))

]
= D1,D′

2

[
β2 7→ α2(args(∆, A.D))

]
= D1,D2

This conclude this case.

This concludes the proof.

Proof of Theorem 2

We first prove that typed signatures are anchorable, then that the result is equivalent to the
signature we started with. We start with the following lemma:

Lemma 5 (Skolemization lemma). Skolemizing a signature does not change its anchoring:

Γ, ?α · !β,∆ ; θ ⊢ C ↪P−→ S : θ =⇒ Γ · !β′, ?α,∆ ; θ ⊢ C
[
β 7→ β′(α)

]
↪
P−→ S : θ

Proof. The key observation is that, from the source syntax, accessing local types does take
into account the depth of enclosing applicative functors. The two key rules are:

• A-Decl-Anchor: when anchoring a type, the number of (list of) universally quantified
parameters n does not appear in the anchoring (nor in the resulting declaration).

• A-Type-Application: similarly, the first type arguments τ1 to τk are ignored. If the
anchoring point θ(φ) is parameterized by only n−k arguments, adding another argument
in front does not change the anchoring.

Coming back to the proof of Theorem 2, we first show that typed signatures are anchorable:

Γ ⊢ S : λα.C ∧ Γ ↪→ θ =⇒ ∃S′. Γ · !α ; θ ⊢ C ↪−→ S′ : α 7→ _

We proceed by induction on the typing derivation of signatures and declarations:

• M-Typ-Sig-ModType and M-Typ-Sig-ModType are base-cases of the induction. We
easily show that the anchoring of the environment Γ ↪→ θ implies that stored module
types are anchorable.

• M-Typ-Sig-GenFct and M-Typ-Sig-Str are immediate.

• M-Typ-Sig-AppFct: the induction hypothesis gives us that the signature of the core
of the functor is anchorable before the substitution of β for β′(α). Here, we use the
skolemization lemma.

• M-Typ-Sig-Con: we first note that all type variables α appear in C′. Then, as subtyping
between types is only defined by equality, all the types expressions τ appear in C. As C
is anchorable, so are all its type components, making C′[α 7→ τ ] anchorable.

Finally, the equivalence between source signatures is an immediate consequence of Theo-
rem 3.



82 CHAPTER 3. M ω

ς := ⋆ | ω | ς � ς (small kinds)
κ := ς | ∀ω.κ | κ� κ (large kinds)

τ := α | τ → τ | {ℓ : τ} | ∀(α :κ). τ | ∃▼(α :κ). τ | λ(α :κ). τ | τ τ | ∀ω.τ | Λω.τ | τ ς | ()
(types)

e := x | λ(x : τ).e | e e | Λ(α :κ).e | e τ | Λω.e | e ς | e@ e | {ℓ = e} | e.ℓ
| pack ⟨τ, e⟩ as ∃▼(α :κ). τ | unpack ⟨α, x⟩ = e in e | () (terms)

Γ := · | Γ, ω | Γ, α :κ | Γ, x : τ (environments)

Figure 17: Syntax of Fω

3.4 The Foundations: Fω Elaboration

The Mω system is designed to offer a standard, standalone, and expressive approach to the
typing of ML modules, while hiding the complexity and artifacts of its encoding in Fω. Yet, the
elaboration of module expressions and signatures of Mω in Fω, which we now present, served
as a basis for the design of Mω and still shines a new light on its internal mechanisms. It is also
used as a proof of type soundness. This elaboration is largely based on the work of Rossberg
et al. [2014], but differs in a key manner for the treatment of abstract types defined inside
applicative functors. A main contribution is the introduction of transparent existential types,
an intermediate between the standard existential types, called opaque existential types, and
the absence of abstraction. They bring the treatment of applicative and generative functors
closer, and significantly simplify the elaboration.

In Section 3.4.1, we introduce Fω with primitive record, existential types and kind poly-
morphism. In Section 3.4.2, we present the elaboration of Mω signatures as Fω types. In Sec-
tion 3.4.3, we focus on the key mechanism of repacking that allows to extend the scope of an
existential type. Repacking is the justification of the lifting of existential types through record
types. In Section 3.4.4, we introduce transparent existential types to justify the skolemization
of existential types through record types. In Section 3.4.5, we show that transparent existen-
tial types can actually be encoded internally as an Fω library. In Section 3.4.6, we present
the elaboration of modules as Fω terms.

3.4.1 Fω with Kind Polymorphism

We use a variant of explicitly typed Fω with primitive records (including record concatena-
tion), existential types, and predicative kind polymorphism. While primitive records and
existential types are standard, kind polymorphism is less common. Predicativity of kind
polymorphism is not needed for type soundness. However, it ensures coherence of types used
as a logic, that is, it prevents typing terms with the empty type ∀(α : ⋆).α, whose evalua-
tion would not terminate. For that purpose, kinds are split into two categories: large and
small. Polymorphic kinds, which are large, can only be instantiated by small kinds, which in
turn do not contain polymorphic kinds. In our setting, kind polymorphism is not essential,
as it is only used to internalize the encoding of transparent existential types as Fω-terms in
Section 3.4.5. Alternatively, we could have assumed a family of transparent existential type
operators indexed by small kinds, so as to never use large kinds, moving part of the encoding
at the meta-level.

The syntax of Fω is given in Figure 17. Typing rules are standard and given in Figure 18.
Type equivalence, defined by αβ-conversion and reordering of record fields, is also standard
and omitted. We use letters τ and e to range over types and expressions to distinguish them
from types u and expressions e of the core language, even though these should actually be
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⊢ ·
⊢ Γ ω /∈ Γ

⊢ Γ, ω

Γ ⊢ κ α /∈ Γ

⊢ Γ, α : κ

Γ ⊢ τ : ⋆ x /∈ Γ

⊢ Γ, x : τ

⊢ Γ

Γ ⊢ ⋆
⊢ Γ ω ∈ Γ

Γ ⊢ ω
Γ ⊢ κ Γ ⊢ κ′

Γ ⊢ κ�κ′
Γ, ω ⊢ κ
Γ ⊢ ∀ω.κ

(a) Environment checking

Γ ⊢ τ1 : ⋆ Γ ⊢ τ2 : ⋆
Γ ⊢ τ1 → τ2 : ⋆

Γ ⊢ τ : ⋆ ⊢ Γ

Γ ⊢
{
ℓl : τ

}
: ⋆

⊢ Γ α : κ ∈ Γ

Γ ⊢ α : κ

Γ, α : κ ⊢ τ : ⋆
Γ ⊢ ∀(α :κ). τ : ⋆

Γ, ω ⊢ τ : ⋆
Γ ⊢ ∀ω.τ : ⋆

Γ, α : κ ⊢ τ : ⋆
Γ ⊢ ∃▼(α :κ). τ : ⋆

Γ, α : κ ⊢ τ : κ′

Γ ⊢ Λ(α :κ). τ : κ→ κ′
Γ ⊢ τ1 : κ′ → κ Γ ⊢ τ2 : κ′

Γ ⊢ τ1 τ2 : κ

Γ, ω ⊢ τ : κ
Γ ⊢ Λω.τ : ∀ω.κ

Γ ⊢ τ : ∀ω.κ Γ ⊢ ς
Γ ⊢ τ ς : κ[ω 7→ ς]

(b) Type checking

F-Var
⊢ Γ x : τ ∈ Γ

Γ ⊢ x : τ

F-Abs
Γ, x : τ ⊢ e : τ ′

Γ ⊢ λ(x : τ).e : τ → τ ′

F-App
Γ ⊢ e1 : τ ′ → τ Γ ⊢ e2 : τ ′

Γ ⊢ e1 e2 : τ

F-Record
Γ ⊢ e : τ #(ℓ)

Γ ⊢
{
ℓ = e

}
:
{
ℓ : τ

} F-Proj
Γ ⊢ e :

{
ℓ : τ, ℓ1 : τ1

}
Γ ⊢ e.ℓ : τ

F-Append
Γ ⊢ e1 :

{
ℓ1 : τ1

}
Γ ⊢ e2 :

{
ℓ2 : τ2

}
ℓ1 # ℓ2

Γ ⊢ e1 @ e2 :
{
ℓ1 : τ1.ℓ2 : τ2

}
F-Tapp
Γ ⊢ e : ∀(α :κ).σ Γ ⊢ τ : κ

Γ ⊢ e τ : σ[τ 7→ α]

F-Kapp
Γ ⊢ e : ∀ω.τ Γ ⊢ ς

Γ ⊢ e ς : τ [ω 7→ ς]

F-Tabs
Γ, α : κ ⊢ e : τ

Γ ⊢ λ(α :κ).e : ∀(α :κ). τ

F-Kabs
Γ, ω ⊢ e : τ

Γ ⊢ Λω.e : ∀ω.τ

F-Pack
Γ ⊢ ∃▼(α :κ).σ : ⋆ Γ ⊢ τ : κ Γ ⊢ e : σ[τ 7→ α]

Γ ⊢ pack ⟨τ, e⟩ as ∃▼(α :κ).σ : ∃▼(α :κ).σ

F-Unpack
Γ ⊢ e1 : ∃▼(α :κ). τ Γ, α :κ, x : τ ⊢ e2 : σ Γ ⊢ σ : ⋆

Γ ⊢ unpack ⟨α, x⟩ = e1 in e2 : σ

(c) Expression typing

Figure 18: Typing rules of Fω
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seen as a subset of τ and e. We consider Fω to be explicitly typed and explicitly kinded. As
a convention, we use a wildcard “_” when a type annotation is unambiguously determined
by an immediate subexpression and may be omitted. This is just a syntactic convenience to
avoid redundant type information and improve readability, but the underlying terms should
always be understood as explicitly-typed Fω terms. We write ω for kind variables, α and β
for type variables of any kind, and φ and ψ for type variables known to be of higher-order
kinds. Application of expressions e ς and types τ ς to kinds are restricted to small kinds ς.
In expressions and type expressions, we actually write kinds κ (and kind abstraction Λω.) in
pale color so that they are nonintrusive, and we often leave them implicit. We actually always
do so in the elaboration typing rules below for conciseness.

For convenience, we use n-ary notations for homogeneous sequences of type-binders. We
introduce let-binding let x = e1 in e2 as syntactic sugar for (λ(x : _).e2) e1; we define n-ary
pack and unpack operators as follows:

pack ⟨τ τ̄ , e⟩ as ∃▼αᾱ.σ ≜ pack⟨τ, pack ⟨τ̄ , e⟩ as ∃▼ᾱ.σ[α 7→ τ ]⟩ as ∃▼αᾱ.σ
unpack ⟨αᾱ, x⟩ = e1 in e2 ≜ unpack ⟨α, x⟩ = e1 in unpack ⟨ᾱ, x⟩ = x in e2
pack ⟨∅, e⟩ as σ ≜ e unpack ⟨∅, x⟩ = e1 in e2 ≜ let x = e in e2

3.4.2 Encoding of Signatures

Mω signatures are actually Fω types with some syntactic sugar. In Fω, we see Y and AI as
term variables, similar to x’s. We assume a collection ℓI of record labels indexed by identifiers
I of the source language. Structural signatures sig D end are just syntactic sugar for record
types

{
D
}
. A small trick is needed to represent type fields, which have no computational

content, but cannot be erased during elaboration as they carry additional typing constraints.
We reuse the solution of F-ing (Rossberg et al. [2014]), encoding them as identity functions
with type annotations. For this, we introduce the following syntactic sugar for the term
representing a type field (on the left). We overload the notation to also mean its type (on the
right).

⟨⟨τ :κ⟩⟩ ≜ Λ(φ :κ→ ⋆).λ(x : φ τ).x (Term) ⟨⟨τ :κ⟩⟩ ≜ ∀(φ :κ→ ⋆).φ τ → φ τ (Type)

The type τ is used as argument of a higher-kinded type operator φ to uniformly handle the
encoding of types of any kind. The key (and only useful) property is that two types (of
the same kind) are equal if and only if their encodings are equal. Finally, declarations are
syntactic sugar for record entries (distinguished by the category of the identifier):

val x : τ ≜ ℓx : τ

type t = τ ≜ ℓt : ⟨⟨τ⟩⟩
module X : C ≜ ℓX : C
module type T = λα.C ≜ ℓT : ⟨⟨λα.C⟩⟩

3.4.3 Sharing Existential Types by Repacking

The encoding of module expressions as Fω terms is slightly more involved than for signatures.
Although structures and functors are simply encoded as records and functions, a difficulty
arises from the need to lift existential types to extend their scope, as explained in Section 3.1.2.

Let us first consider the easier generative case. The only construct for handling a term
with an abstract type is unpack, which allows using the term in a subexpression, hence with
a limited scope, but not to make an abstract type accessible to the rest of the program. Yet,
abstract type declarations inside modules have an open scope and are visible in the rest of
the program. At a technical level, the difficulty comes from the representation of structures.
To model them, one needs ordered records (also known as telescopes), where each component
can introduce new abstract types accessible to the rest of the record, while standard Fω only
provides non-dependent records.
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This observation was at the core of the design of open existential types Montagu [2010]
and of recursive type generativity Dreyer [2007a]. Here, in order to stay in plain Fω, we reuse
and adapt the trick of F-ing (Rossberg et al. [2014]): structures are built field by field with a
special repacking pattern: abstract types are unpacked, shared, but abstractly, with the rest
of the structure, and then repacked. This allows the terms to mimic the existential lifting
done in the types.

To capture this lifting of existentials out of records, we first introduce a combined syntactic
form repack▼ ⟨ᾱ, x⟩ = e1 in e2, which allows the abstract types of e1 to appear in the type
of e23:

repack▼ ⟨ᾱ, x⟩ = e1 in e2 ≜ unpack ⟨ᾱ, x⟩ = e1 in pack ⟨ᾱ, e2⟩ as ∃▼ᾱ._

Then, we use it to define a new construct to concatenate two records e1 and e2 with disjoint
domains, but where e2 might access the first record, via the bound name x1, and reuse its
abstract types, via the bound variables α:

lift▼⟨ᾱ, x1 = e1 @ e2⟩ ≜ repack▼ ⟨ᾱ, x1⟩ = e1 in repack
〈
β̄, x2

〉
= e2 in x1 @ x2

It is better understood by the following derived typing rule and its use in the following
example.

Γ ⊢ e1 : ∃▼ᾱ.
{
ℓ1 : τ1

}
Γ, ᾱ, x1 :

{
ℓ1 : τ1

}
⊢ e2 : ∃▼β̄.

{
ℓ2 : τ2

}
ℓ1# ℓ2

Γ ⊢ lift⟨ᾱ, x1 = e1 @ e2⟩ : ∃▼ᾱ, β̄.
{
ℓ1 : τ1; ℓ2 : τ2

}
Example 3.4.1. A simple module M with three type fields, on the left-hand side. The raw
encoding (after reduction of administrative let-bindings) on the right-hand side shows how
abstract types are shared between components via lifting.
Source

module M = structA
type t = A.t

typeu = A.u

type v = A.t×A.u

end

Encoding of e

e = lift▼ ⟨α, x1 = pack ⟨(), {ℓt = ⟨⟨()⟩⟩}⟩ as ∃▼α. {ℓt : ⟨⟨α⟩⟩}

@ lift▼ ⟨β, x2 = pack ⟨(), {ℓu = ⟨⟨()⟩⟩}⟩ as ∃▼β. {ℓu : ⟨⟨β⟩⟩}

@ {ℓv = ⟨⟨α× β⟩⟩}⟩⟩

Signature of e

C = ∃α, β. {ℓt : ⟨⟨α⟩⟩ ; ℓu : ⟨⟨β⟩⟩ ; ℓv : ⟨⟨α× β⟩⟩}

3.4.4 Transparent Existential Types and Their Lifting Through Function
Types

The repacking pattern allows lifting existential types outside of record types. Unfortunately,
this is insufficient for the applicative case, which uses skolemization to further lift abstract
types out of the functor body to the front of the functor. This lifting of existential types
though universal quantifiers by skolemization and through arrow types, as done in Mω, is not
definable in Fω. More precisely, lifting through arrow types is unsound, while lifting through
universal types is not expressible.

One solution is to avoid skolemization by a-priori abstraction over all possible type and
term variables, i.e., the whole typing context. Doing so, existential types are always introduced
at the front and need not be skolemized. This is the solution followed by the authors of F-
ing (Rossberg et al. [2014]) and by Shan [2004]. While this suffices to prove soundness, the
encoding is impractical for manual use of the pattern—as it requires frequently abstracting
over the whole environment—and therefore does not provide a good intuition of what modules

3We leave the type implicit since the type of repacking is fully determined by the combination of ᾱ and
the type of e2
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really are. The encoding could be slightly improved by abstracting over fewer variables,
without really solving the problem of a-priori abstraction.

We instead retain skolemization, following the intuition of the Mω system, but we tweak the
definition of existential types to make their lifting though universal types definable. Namely,
we introduce transparent existential types, written ∃▽τ (α :κ).σ to described types that behave
as usual existentials ∃▼(α :κ).σ but remembering the witness type τ for the abstract type α.

We create a transparent existential type with the expression pack e as ∃▽τ (α :κ).σ, which
behaves much as pack ⟨τ, e⟩ as ∃▼(α :κ).σ, except that the witness type τ remains visible in
the result type. A transparent existential type is thus weaker than a usual abstract type, as
we still see the witness type. It is still abstract, as α cannot be turned back into its witness
type τ and has to be treated abstractly. Two transparent existential types with different
witnesses are incompatible. This could be seen as a weakness of transparent existentials, but
it is actually a key to their lifting through arrow types.

Transparent existential types do not replace usual existential types, which we here call
opaque existential types, but come in addition to them. Indeed, an expression of a transparent
existential type can be further abstracted to become opaque, using the expression seal e,
which behaves as the identity but turns the expression e of type ∃▽τ (α :κ).σ into one of type
∃▼(α :κ).σ.

Transparent existential types may also be used abstractly, with the expression repack▽

⟨α, x⟩ = e1 in e2, which is the analog of the expression repack▼ ⟨α, x⟩ = e1 in e2 but when e1 is
a transparent existential type ∃▽τ (α :κ).σ1. In both cases, e2 is typed in a context extended
with the abstract types α and a variable x of type σ1. Crucially, e2 cannot see the witnesses
τ . However, the abstract type variables α may still appear in the type σ2 of the expression e2,
and therefore it is made transparent again in the result type of repack▽ ⟨α, x⟩ = e1 in e2, which
is ∃▽τ (α :κ).σ2. We do not need a primitive transparent version unpack▽ ⟨α, x⟩ = e1 in e2,
since it can be defined as syntactic sugar for unpack ⟨α, x⟩ = seal e1 in e2.

Lifting through an arrow type So far, one may wonder what is the advantage of trans-
parent existentials by comparison with opaque existentials. Their key advantage is that we
can provide two key additional constructs for lifting transparent existentials across arrow
types and universal types—the only reason to have introduced them in the first place. The
lifting across an arrow type, written lift→e, turns an expression of type σ1 → ∃▽τ (α :κ).σ2
into one of type ∃▽τ (α :κ).(σ1 → σ2) as long as α is fresh for σ1. Since we can observe the
witness τ , we can ensure that the choice of the witness does not depend on the value (of type
σ1), allowing us to lift it outside of the function. While this operation seems easy, it crucially
depends on existential types begin transparent—this transformation would be unsound with
opaque existentials.

Unsoundness example For instance, let us consider the following example (adapted from
the example of Dreyer et al. [2003]). We first define the type of a small record containing a
value and a function that can be applied to the value:

φ ≜ λα.{ℓx : α, ℓf : α→ unit}

Then we consider the following expression:

m ≜ λx. if x then (pack ⟨int, {ℓx = 42, ℓf = λx.()}⟩ as ∃▼α.φα)
else (pack ⟨unit → unit, {ℓx = λu.(), ℓf = λx.x ()}⟩ as ∃▼α.φα)

It has type bool → ∃▼α. {ℓx : α, ℓf : α→ unit}, but it would be unsound to consider it at the
type ∃▼α.bool → {ℓx : α, ℓf : α→ unit}. Indeed, assuming m has such type, the following
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F-Hide
Γ ⊢ ∃▽τ (α :κ).σ : ⋆ Γ ⊢ e : σ[α 7→ τ ]

Γ ⊢ pack e as ∃▽τ (α :κ).σ : ∃▽τ (α :κ).σ

F-Seal
Γ ⊢ e : ∃▽τ (α :κ).σ

Γ ⊢ seal e : ∃▼(α :κ). τ ′

F-Hidden
Γ ⊢ e1 : ∃▽τ (α :κ).σ Γ, α :κ, x : τ ⊢ e2 : σ′

Γ ⊢ repack▽ ⟨α, x⟩ = e1 in e2 : ∃▼(α :κ).σ′

F-LiftArr
Γ ⊢ e : σ1 → ∃▽τ (α :κ).σ2

Γ ⊢ lift→e : ∃▽τ (α :κ).σ1 → σ2

F-LiftAll
Γ ⊢ e : ∀(β :κ′).∃▽τ (α :κ).σ

Γ ⊢ lift∀e : ∃▽λ(β :κ′). τ (α′ :κ′ → κ).∀(β :κ′).σ[α 7→ α′ β]

Figure 19: Typing rules for transparent existential types

well-typed code would get stuck:

unpack ⟨α,M⟩ = m in let M1 =M true in
let M2 =M false in
M2.f (M1.x)

The evaluation would get stuck on the application 42 (). The takeaway is that function of type
σ1 → ∃▼α.σ2 can return an existential value whose witness type depends on the argument; it
would thus be impossible to have a unique witness type to be used for all applications of the
function, as required in a function of type ∃▼α.(σ1 → σ2). Fω does not have dependent types,
but have existential types with dynamically chosen witnesses (the opaque ones).

Lifting through an universal type Similarly, lifting across a universal type variable β
of kind κ′, written lift∀e, turns an expression of type Λ(β :κ′).∃▽τ (α :κ).σ into one of type
∃▽λ(β :κ′). τ (α′ :κ′ → κ).∀(β :κ′).σ[α 7→ α′ β], provided β is fresh for τ , using skolemization of
both the existential variable α and its witness type τ . It is a key for type soundness that β
does not appear free in the witness type, hence that we know the witness type—this is why
skolemization is not encodable with opaque existential types.

An extension of Fω To summarize, we have extended the syntax of Fω as follows:

τ ::= . . . | ∃▽τ (α :κ).σ

e ::= . . . | pack e as ∃▽τ (α :κ).σ | seal e | repack▽ ⟨α, x⟩ = e1 in e2 | lift→e | lift∀e

Their typing rules are given in Figure 19 and discussed below. Transparent existential types
are introduced (just as opaque ones) by packing, by the Rule F-Hide. They can be transformed
into opaque ones by sealing, where the witness is lost, in Rule F-Seal.

F-Hide
Γ ⊢ ∃▽τ (α :κ).σ : ⋆ Γ ⊢ e : σ[α 7→ τ ]

Γ ⊢ pack e as ∃▽τ (α :κ).σ : ∃▽τ (α :κ).σ

F-Seal
Γ ⊢ e : ∃▽τ (α :κ).σ

Γ ⊢ seal e : ∃▼(α :κ). τ ′

Transparent existential types do not have an unpack construct, only a repack construct,
with the following rule:

F-Repack
Γ ⊢ e1 : ∃▽τ (α :κ).σ Γ, α :κ, x : τ ⊢ e2 : σ′

Γ ⊢ repack▽ ⟨α, x⟩ = e1 in e2 : ∃▼(α :κ).σ′

This comes from the fact that, when unpacking unpack ⟨α, x⟩ = e1 in e2 the left-hand-side
expression e2 only sees the right-hand-side e1 through the variables α and x. Specifically,
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it could not pack the result back as a transparent existential, as it sees α only abstractly!
Therefore, we only have a repack construct, and the normal unpack can be obtained by sealing
and using the normal opaque unpack construct.

Finally, we have the two rules for the lifting operators F-LiftArr and F-LiftAll, written
here without kinds for the sake of readability (the kinded version can be found in Figure 19):

F-LiftArr
Γ ⊢ e : σ1 → ∃▽τ (α).σ2

Γ ⊢ lift→e : ∃▽τ (α).σ1 → σ2

F-LiftAll
Γ ⊢ e : ∀β.∃▽τ (α).σ

Γ ⊢ lift∀e : ∃▽λβ.τ (α′).∀β.σ[α 7→ (α′ β)]

Semantics The added constructs have no additional computational content, namely repack
behaves as a let-binding, while the other constructs behave as their underlying expression e.

Derived operators We add syntactic sugar for n-ary versions of transparent packing and
repacking, as we did for opaque existentials. We write sealn for n applications of seal. We
can define a lifting operation lift▽⟨ᾱ, x1 = e1 @ e2⟩ for dependent record concatenation as the
counterpart of the opaque version, by replacing opaque repacking by transparent repacking.
Finally, we also define a new operation lift∗e that uses a combination of the primitive lift→ and
lift∀ to turn an expression e of type ∀ᾱ.σ1 → ∃▽τ (β̄).σ2 into one of type ∃▽λᾱ.τ (β̄′).∀α.σ1 →
σ2

[
β̄ 7→ β′ ᾱ

]
, which is the key transformation for lifting existentials out of applicative functor

bodies. The operator lift∗ is defined as lift∀
p▷

q where p and q represent the size4 of ᾱ and β̄,
where lift∀

p▷
q is itself inductively defined as follows:

lift⋄q+1e ≜ repack▽ ⟨α, x⟩ = lift∀
p

(lift▷e) in lift⋄qx lift⋄0e ≜ e

lift∀
p+1

e ≜ lift∀(Λα. lift∀
p

(e α)) lift∀
0

e ≜ e

• We allow lift∀ to cross a sequence of quantifiers defining lift∀(q+1)e to be lift∀
(
λα. lift∀qe α

)
and lift∀0e to be e.

• We allow lift→ and lift∀q to be applied to a sequence of quantifiers ∃▼(ᾱ :ω). τ instead of
a single one, defining lift⋄n+1e to be repack▽ ⟨α, x⟩ = lift⋄e in lift⋄nx with lift⋄0e equal to e.

• We define lift∀q→n e to be lift∀qn (lift→n e).

We then simply write lift∗e for lift∀q→n e, leaving the number of iterations n and q implicit
from the type of the argument (taking the longest possible sequence). We have the following
derived typing rule:

F-LiftStar
Γ ⊢ e : ∀α.σ → ∃▽τ (β).σ′

Γ ⊢ lift∗e : ∃▽λα.τ (β′).∀α.σ → σ′[β 7→ (β′ α)]

3.4.5 Implementation of Transparent Existential Types in Fω

Interestingly, transparent existential types are completely definable in plain Fω (with kind
polymorphism). A concrete implementation is given on Figure 20, with and without syntactic
sugar.

We first define a record e0 with the constructs, which is actually pretty simple: most
fields are η-expansions of the identity. Then, we define a type expression τE , and use normal
(opaque) existentials of Fω to pack e0: eE = pack ⟨τ0, e0⟩ as τE where τ0 is the interface type
that hides the implementation of the type E . Using this definition, we may see a program e

4p and q are left implicit in lift∗e as they can be determined from the type of the argument e
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e0 ≜



Pack = Λω.Λ(α :ω).Λ(φ :ω� ⋆).λ(x : φα).x
Seal = Λω.Λ(α :ω).Λ(φ :ω� ⋆).λ(x : φα).pack ⟨α, x⟩ as ∃▼(α :ω). φ α
Repack = Λω.Λ(α :ω).Λ(φ :ω� ⋆).λ(x : Eω α φ).

Λ(ψ :ω� ⋆).λ(f : ∀(α :ω). φ α→ ψ α).(f α x)
Lift→ = Λω.Λ(α :ω).Λ(φ :ω� ⋆).Λ(β : ⋆).λ(f : β → φα).f
Lift∀ = Λω.Λω.Λ(α :ω�ω).Λ(φ :ω�ω� ⋆).λ(x : (∀(β :ω). φ β(αβ))).x


τ0 ≜ Λω.λ(α :ω).λ(φ :ω� ⋆).φ α

τE ≜ ∃▼(E :∀ω.ω� (ω� ⋆)� ⋆).

Pack : ∀ω.∀(α :ω).∀(φ :ω� ⋆).φ α→ Eω α φ
Seal : ∀ω.∀(α :ω).∀(φ :ω� ⋆).Eω α φ→ ∃▼(α :ω). φ α
Repack : ∀ω.∀(α :ω).∀(φ :ω� ⋆).Eω α φ→

∀(ψ :ω� ⋆).(∀(α :ω). φ α→ ψ α) → Eω α ψ
Lift→ : ∀ω.∀(α :ω).∀(φ :ω� ⋆).∀(β : ⋆).

(β → Eω α φ) → Eω α (λ(α :ω).β → φα)
Lift∀ : ∀ω.∀ω.∀(α :ω�ω).∀(φ :ω�ω� ⋆).

(∀(β :ω).Eω (αβ) (φβ)) →
E (ω�ω)α (λ(α :ω�ω).∀(β :ω). φ β (αβ))


eE ≜ pack ⟨τ0, e0⟩ as τE

(a) Implementation of transparent existentials as a library in Fω with (predicative) kind polymor-
phism. The (kind-polymorphic) operator E should be understood as the transparent existential quan-
tifier.

e0 ≜


Pack = Λα.Λφ.λ(x : φα).x
Seal = Λα.Λφ.λ(x : φα).pack ⟨α, x⟩ as ∃▼α. φα
Repack = Λα.Λφ.λ(x : Eα φ).Λψ.λ(f : ∀α. φα→ ψ α).(f α x)
Lift→ = Λα.Λφ.Λβ.λ(f : β → φα).f
Lift∀ = Λα.Λφ.λ(x : (∀β. φ β(αβ))).x


τ0 ≜ λα.λφ .φα

τE ≜ ∃▼(∃▽.).
Pack : ∀α.∀φ .φα→ ∃▽αβ. φβ

Seal : ∀α.∀φ .∃▽αβ. φβ → ∃▼β. φβ

Repack : ∀α.∀φ .∃▽αβ. φβ → ∀ψ .(∀α. φα→ ψ α) → ∃▽αβ. ψβ

Lift→ : ∀α.∀φ .∀β.(β → ∃▽αγ. φγ) → ∃▽αγ.(β → φγ)γ
Lift∀ : ∀α.∀φ .(∀β.∃▽αβγ.(φβ)γ) → ∃▽αγ.(∀β.φ β (αβ))γ


eE ≜ pack ⟨τ0, e0⟩ as τE

(b) Same implementation as above, but with omitted kinds and syntactic sugar for the transparent
existential operator. We write a type variable as subscript as a shortcut to indicate that it is the free
type variable (via an η-expension): φβ for λβ.(φβ).

Figure 20: Implementation of transparent existentials as a library in Fω (with and without
syntactic sugar)
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using transparent existential types as a program unpack ⟨E , xE ⟩ = eE in e in plain Fω, with
the following additional syntactic sugar5:

∃▽τ (β :κ).σ ≜ Eκ τ (λ(β :κ).σ)

pack e as ∃▽τ (α).σ ≜ xE .Pack τ (λ(α :_).σ) e

repack▽ ⟨α, x⟩ = e1 in e2 ≜ xE .Repack _ _ _ (Λ(α :_).λ(x : α).e2)

seal e ≜ xE .Seal _ _ e

lift→e ≜ xE .Lift→ _ _ e

lift∀ e ≜ xE .Lift∀ _ _ e

We also write repack♢ ⟨α, x⟩ = e1 in e2 and lift♢⟨ᾱ, x1 = e1 @ e2⟩ where ♢ stands for either ▽
or ▼.

Sound by construction The key take-away of this implementation is that it inherits sound-
ness from Fω: we do not need to do a soundness proof of the extended language. We verified
this implementation in Coq via a shallow embedding.

3.4.6 Elaboration

As for Mω, the elaboration relies on a subtyping judgment and a typing judgment for both
signatures and modules. However, as Mω signatures are already Fω types, we can reuse the Mω

elaboration judgment (although we should now reread it with implicit kinds). Specifically,
neither Mω signatures nor its typing contexts mention transparent existential types. This is a
key observation: transparent existential types may only appear in types of module expressions.
This means that values of such types are never bound to a variable (during elaboration), which
would otherwise force them to appear in the typing context. Instead, transparent existential
types are always lifted to the top of the expression (using the lift operators).

There are two main elaboration judgments, for subtyping and typing.

• Γ ⊢ M : ∃♢α.C ⇝ e the typing of the module expressions and the declarations. In
addition to the signature, an evidence term e is produced. The judgment is also defined
for bindings Γ ⊢A D : ∃♢α.D⇝ e

• Γ ⊢ C ≺: C′⇝ f the subtyping between Mω signatures, extended to return the explicit
coercion function f . The judgment is also defined for declarations Γ ⊢ D ≺: D′⇝ f

Properties of those two judgments are stated and proved in the next section, Theorem 7.

Subtyping

The rules are given in Figure 21 and discussed below.

Declarations As subtyping between declarations is restricted to the equality for type and
value fields, the coercion functions of rules E-Sub-Decl-Val and E-Sub-Decl-Type are just
the identity:

E-Sub-Decl-Val
Γ ⊢ (val x : τ) ≺: (val x : τ)⇝ λx.x

E-Sub-Decl-Type
Γ ⊢ (type t = τ) ≺: (type t = τ)⇝ λx.x

5Here, _ stands for kinds or types that are left implicit as they can be straightforwardly inferred from
other arguments. We also extend transparent existentials with sequences of abstractions as we did for opaque
existentials.
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E-Sub-Sig-Struct
D0 ⊆ D Γ ⊢ D0 ≺: D′

⇝ f I ′ = dom(D′
)

Γ ⊢ sig D end ≺: sig D′
end⇝ λx.

{
ℓI′ = f (x.ℓI′)

}
E-Sub-Sig-GenFct

Γ, α ⊢ C ≺: C′[α′ 7→ τ ]⇝ f

Γ ⊢ () → ∃▼α.C ≺: () → ∃▼α′.C′⇝ λx.λu.unpack ⟨α, y⟩ = x () in pack ⟨τ , f y⟩ as ∃▼α′.C′

E-Sub-Sig-AppFct
Γ, α′ ⊢ C′

a ≺: Ca[α 7→ τ ]⇝ f Γ, α′ ⊢ C[α 7→ τ ] ≺: C′⇝ g

Γ ⊢ ∀α.Ca → C ≺: ∀α′.C′
a → C′⇝ λx : (∀α.Ca → C).Λα′.λy : C′

a.g (x τ (f y))

(a) Rules for signatures

E-Sub-Decl-Val
Γ ⊢ (val x : τ) ≺: (val x : τ)⇝ λx.x

E-Sub-Decl-Type
Γ ⊢ (type t = τ) ≺: (type t = τ)⇝ λx.x

E-Sub-Decl-Mod
Γ ⊢ C ≺: C′⇝ f

Γ ⊢ (module X : C) ≺: (module X : C′)⇝ f

E-Sub-Decl-ModType
Γ, α ⊢ C ≺: C′⇝ f Γ, α ⊢ C′ ≺: C⇝ g

Γ ⊢ (module type T = λα.C) ≺: (module type T = λα.C′)⇝ λx.x

(b) Rules for declarations

Figure 21: Subtyping with elaboration (outputing the coercion function)

For submodules, the coercion function is just returned directly:

E-Sub-Decl-Mod
Γ ⊢ C ≺: C′⇝ f

Γ ⊢ (module X : C) ≺: (module X : C′)⇝ f

Finally, for module types, the coercion function is again the identity:

E-Sub-Decl-ModType
Γ, α ⊢ C ≺: C′⇝ f Γ, α ⊢ C′ ≺: C⇝ g

Γ ⊢ (module type T = λα.C) ≺: (module type T = λα.C′)⇝ λx.x

Signatures The rules for signature display coercion functions that are a bit more involved.
First, for structural signatures, the coercion functions of each fields are gathered and used to
produce the result:

E-Sub-Sig-Struct
D0 ⊆ D Γ ⊢ D0 ≺: D′

⇝ f I ′ = dom(D′
)

Γ ⊢ sig D end ≺: sig D′
end⇝ λx.

{
ℓI′ = f (x.ℓI′)

}
For applicative functors, we have two coercion functions: f for the domain and g for the

codomain, as displayed in the following rule:

E-Sub-Sig-AppFct
Γ, α′ ⊢ C′

a ≺: Ca[α 7→ τ ]⇝ f Γ, α′ ⊢ C[α 7→ τ ] ≺: C′⇝ g

Γ ⊢ ∀α.Ca → C ≺: ∀α′.C′
a → C′⇝ λx : (∀α.Ca → C).Λα′.λ(y : C′

a).g (x τ (f y))
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The resulting coercion function takes the function x : (∀α.Ca → C) as input, then a set of
type parameters α′, and finally a parameter (y : C′

a). To call x, we first specialize it on the
instantiation τ , then coerce y into the type Ca[α 7→ τ ] by using f . Therefore, we have x τ (f y),
which is of type C[α 7→ τ ]. This is coerced back into C′ by calling g. Overall, it can be thought
of as being more or less the composition g ◦ x ◦ f

For generative functors, we have only a single coercion function f for the codomain, but
we also need to take care of the existential quantification on both sides, that might differ:

E-Sub-Sig-GenFct
Γ, α ⊢ C ≺: C′[α′ 7→ τ ]⇝ f

Γ ⊢ () → ∃▼α.C ≺: () → ∃▼α′.C′⇝ λx.λu.unpack ⟨α, y⟩ = x () in pack ⟨τ , f y⟩ as ∃▼α′.C′

The coercion function basically repacks the result of the functor with the right type, using
the coercion function of the codomain.

Typing

To factor notations for the typing judgment, we introduce the meta-variable ϑ that stands
for either an opaque existential ▼ or a transparent one ▽τ together with its witness type τ .
We write mode(ϑ) (resp. mode(ϑ̄)) for the mode of ϑ (resp. the homogeneous sequence ϑ̄),
which is either ▽ or ▼. When a mode is expected without a witness type, we may leave the
projection implicit and just write ϑ̄ instead of mode(ϑ̄). The convention is the same as for
the Mω system.

The judgment Γ ⊢♢ M : ∃ϑ̄ᾱ.C⇝ e extends Mω typing with the elaborated module term e.
The mode ♢ must coincide with ϑ̄, and may be left implicit, as we did for the corresponding Mω

judgment. Hence, we usually just write Γ ⊢ M : ∃ϑ̄ᾱ.C ⇝ e. A similar, helper judgment
Γ ⊢♢A B : ∃ϑ̄ᾱ.D⇝ e is also defined for bindings. When reading an Mω type environment Γ
in Fω, we must read A.(val x : τ) and A.(module X : C) as Ax : τ and AX : C, etc.

The typing rules are given in Figure 22 and discussed bellow.

Sequences and structures The key rule for structures is the sequence rule that combines
bindings. It may be concisely written as follows for generative and applicative modes:

E-Typ-Bind-SeqGen
Γ ⊢A B : ∃▼α1.D⇝ e1

Γ, α1, A.D ⊢A B : ∃▼α2.D⇝ e2

Γ ⊢A B, B : ∃▼α1α2.(D,D)⇝
lift▼⟨α1, x1 = e1 @ (let AI1 = x1.ℓI1 in e2)⟩

E-Typ-Bind-SeqApp
Γ ⊢A B : ∃▽τ1(α1).D⇝ e1

Γ, α1, A.D ⊢A B : ∃▽τ2(α2).D⇝ e2

Γ ⊢A B; B : ∃▽τ1τ2(α1α2).(D,D)⇝
lift▽⟨α1, x1 = e1 @ (let AI1 = x1.ℓI1 in e2)⟩

The single field of e1 is concatenated with the fields of e2 after lifting out their existential
bindings. In both cases, the field of e1 is made visible in e2, as well as the existentials in front
of e1—but abstractly. As the those two rules are actually similar, they can be factored into
an unified rule E-Typ-Bind-Seq:

E-Typ-Bind-Seq
Γ ⊢A B : ∃ϑ̄1α1.D⇝ e1 Γ, α1, A.D ⊢A B : ∃ϑ̄2α2.D⇝ e2

Γ ⊢A B, B : ∃ϑ̄1ϑ̄2α1α2.(D,D)⇝ lift♢⟨α1, x1 = e1 @ (let AI1 = x1.ℓI1 in e2)⟩

We also have a unified rule for typing structures in both modes:

E-Typ-Mod-Struct
Γ ⊢A B : ∃ϑ̄ᾱ.D⇝ e A /∈ Γ

Γ ⊢ structA B end : ∃ϑ̄ᾱ.sig D end⇝ e



3.4. THE FOUNDATIONS: Fω ELABORATION 93

E-Typ-Mod-Arg
(Y : C) ∈ Γ

Γ ⊢ Y : C⇝ Y

E-Typ-Mod-Var
(A.X : module C) ∈ Γ

Γ ⊢A.X : C⇝AX

E-Typ-Mod-AppFct
Γ ⊢ S : λα.Ca Γ, α, Y : Ca ⊢ M : ∃▽τ (β).C⇝ e

Γ ⊢ (Y : S) → M : ∃▽λα.τ (β′).∀α.Ca → C
[
β 7→ β′(α)

]
⇝ lift∗(Λα.λ(Y : Ca).e)

E-Typ-Mod-AppApp
Γ ⊢P : ∀α.Ca → C⇝ e Γ ⊢P ′ : C′⇝ e′ Γ ⊢ C′ ≺: Ca[α 7→ τ ]⇝ f

Γ ⊢P (P ′) : C[α 7→ τ ]⇝ e τ (f e′)

E-Typ-Mod-GenFct
Γ ⊢ M : ∃▼α.C⇝ e

Γ ⊢ () → M : () → ∃▼α.C⇝ λ(_ : ()).e

E-Typ-Mod-GenApp
Γ ⊢P : () → ∃▼α.C⇝ e

Γ ⊢P () : ∃▼α.C⇝ e ()

E-Typ-Mod-Ascr
Γ ⊢ S : λα.C Γ ⊢P : C′⇝ e Γ ⊢ C′ ≺: C[α 7→ τ ]⇝ f Γ ⊢ τ : ς

Γ ⊢ (P : S) : ∃▽τ (α).C⇝ pack f e as ∃▽τ (α).C

E-Typ-Mod-Seal
Γ ⊢ M : ∃▽τ (α).C⇝ e

Γ ⊢ M : ∃▼α.C⇝ seal|α| e

E-Typ-Mod-Struct
Γ ⊢A B : ∃ϑ̄ᾱ.D⇝ e A /∈ Γ

Γ ⊢ structA B end : ∃ϑ̄ᾱ.sig D end⇝ e

E-Typ-Mod-Proj
Γ ⊢ M : ∃ϑ̄ᾱ.sig D end⇝ e module X : C ∈ D α′ = fv(C) ∩ α

Γ ⊢ M.X : ∃ϑ̄ᾱ.C⇝ clean♢⟨α, α′⟩ (repack♢ ⟨α, x⟩ = e in x.ℓX)

(a) Rules for modules

E-Typ-Bind-Let
Γ ⊢ e : τ ⇝ e

Γ ⊢A (letx = e) : (val x : τ)⇝ {ℓx = e}

E-Typ-Bind-Type
Γ ⊢ u : τ

Γ ⊢A (type t = u) : (type t = τ)⇝ {ℓt = ⟨⟨τ⟩⟩}

E-Typ-Bind-ModType
Γ ⊢ S : λα.C

Γ ⊢A (module type T = S) : (module type T = λα.C)⇝ {ℓT = ⟨⟨λα.C⟩⟩}

E-Typ-Bind-Empty
Γ ⊢A ∅ : ∅⇝ {}

E-Typ-Bind-Mod
Γ ⊢A M : ∃ϑ̄ᾱ.C⇝ e

Γ ⊢A (moduleX = M) : (∃ϑ̄ᾱ.module X : C)⇝ repack♢ ⟨α, x⟩ = e in {ℓX = x}

E-Typ-Bind-Seq
Γ ⊢A B : ∃ϑ̄1α1.D⇝ e1 Γ, α1, A.D ⊢A B : ∃ϑ̄2α2.D⇝ e2

Γ ⊢A B, B : ∃ϑ̄1ϑ̄2α1α2.(D,D)⇝ lift♢⟨α1, x1 = e1 @ (let AI1 = x1.ℓI1 in e2)⟩

(b) Rules for bindings

Figure 22: Typing rules with elaboration
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Modes and sealing By default, elaboration is done in applicative mode, hence inferring
transparent existentials, but it can be turned into generative mode when required, using the
floating Rule E-Typ-Mod-Seal, which, unsurprisingly, uses the sealing operator:

E-Typ-Mod-Seal
Γ ⊢ M : ∃▽τ (α).C⇝ e

Γ ⊢ M : ∃▼α.C⇝ seal|α| e

Since signature ascription is defined on paths, it is always applicative (rule E-Typ-Sig-App):

E-Typ-Mod-Ascr
Γ ⊢ S : λα.C Γ ⊢P : C′⇝ e Γ ⊢ C′ ≺: C[α 7→ τ ]⇝ f Γ ⊢ τ : ς

Γ ⊢ (P : S) : ∃▽τ (α).C⇝ pack f e as ∃▽τ (α).C

That is, signature ascription (P : S) may introduce new abstract types α as prescribed by
the (elaboration λα.C of the) signature S, but these are transparent existentials in the type
of (P : S). The fact that ascription actually does not introduce opaque existential is essential
for sealing inside applicative functors, a feature often left out of formalization attempts.

Elaboration of functors At first glance, the elaboration of functors seems to differ quite
significantly for the applicative case (Rule E-Typ-Mod-AppFct) and generative case (Rule
E-Typ-Mod-GenFct):

E-Typ-Mod-AppFct
Γ ⊢ S : λα.Ca Γ, α, Y : Ca ⊢ M : ∃▽τ (β).C⇝ e

Γ ⊢ (Y : S) → M : ∃▽λα.τ (β′).∀α.Ca → C
[
β 7→ β′(α)

]
⇝ lift∗Λα.λ(Y : Ca).e

E-Typ-Mod-GenFct
Γ ⊢ M : ∃▼α.C⇝ e

Γ ⊢ () → M : () → ∃▼α.C⇝ λ(_ : ()).e

The body of an applicative functor is elaborated to transparent existentials which are lifted,
while in the generative case, the existentials are opaque and cannot be lifted. However, this
difference is largely artificial as a result of using a special argument () to enforce generativ-
ity. Otherwise, the main difference lies in enforcing the body of the functor to be typed in
generative mode, hence with an opaque existential type. Since lift∗ is neutral on terms that
do not have transparent existential types, the elaboration of the generative case could also be
written lift∗λ(_ : ()).e, so that the two cases only differ by the modes of elaboration of their
bodies.

Functor applications The corresponding rules for applying applicative functors E-Typ-
Mod-AppApp and generative functors E-Typ-Mod-GenFct are relatively straightforward,
using the normal Fω application:

E-Typ-Mod-AppApp
Γ ⊢ P : ∀α.Ca → C⇝ e Γ ⊢ P ′ : C′⇝ e′ Γ ⊢ C′ ≺: Ca[α 7→ τ ]⇝ f

Γ ⊢ P (P ′) : C[α 7→ τ ]⇝ e τ (f e′)

E-Typ-Mod-GenFct
Γ ⊢ M : ∃▼α.C⇝ e

Γ ⊢ () → M : () → ∃▼α.C⇝ λ(_ : ()).e
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Projection As expected, projection is elaborated into a record projection, but there is a
catch: the projected module expression M can have existential types. The solution, displayed
in the following simplified rule, is to unpack, project and pack again i.e., to repack over the
projection:

E-Typ-Mod-Proj-SIMPLIFIED
Γ ⊢ M : ∃ϑ̄ᾱ.sig D end⇝ e module X : C ∈ D

Γ ⊢ M.X : ∃ϑ̄ᾱ.C⇝ repack♢ ⟨α, x⟩ = e in x.ℓX

As for structures and sequences, we have a single rule for both modes that relies on the mode
of the repack♢ construct. To exactly match the Mω rule for projection M-Typ-Mod-Proj, we
also need to “garbage-collect” the abstract variables that do not appear in the result type.
This is done with a clean♢⟨α, β⟩ e macro that removes the type variables in α that do not
appear in β. It is defined as:

clean♢⟨γα, γβ⟩ e ≜ repack♢ ⟨γ, x⟩ = e in clean♢⟨α, β⟩ x

clean♢⟨γα, γ′β⟩ e ≜ unpack♢ ⟨γ, x⟩ = e in clean♢⟨α, γβ⟩ x

clean♢⟨∅,∅⟩ e ≜ e

Using this macro, we can define the proper projection rule:

E-Typ-Mod-Proj
Γ ⊢ M : ∃ϑ̄ᾱ.sig D end⇝ e module X : C ∈ D α′ = fv(C) ∩ α

Γ ⊢ M.X : ∃ϑ̄ᾱ.C⇝ clean♢⟨α, α′⟩ (repack♢ ⟨α, x⟩ = e in x.ℓX)

Bindings The elaboration of bindings produces records with a single field. The rules for
value, type fields and module type fields are straightforward. Using the type encoding for
values, which we recall as:

⟨⟨(τ :ω)⟩⟩ = λ(β :ω� ⋆).λ(x : (β τ)).x

we get the following rules:

E-Typ-Bind-Let
Γ ⊢ e : τ ⇝ e

Γ ⊢A (letx = e) : (val x : τ)⇝ {ℓx = e}

E-Typ-Bind-Type
Γ ⊢ u : τ

Γ ⊢A (type t = u) : (type t = τ)⇝ {ℓt = ⟨⟨τ⟩⟩}

E-Typ-Bind-ModType
Γ ⊢ S : λα.C

Γ ⊢A (module type T = S) : (module type T = λα.C)⇝ {ℓT = ⟨⟨λα.C⟩⟩}

The rule for modules bindings displays an extrusion, which, like for the rule of sequences E-
Typ-Bind-Seq, uses repacking:

E-Typ-Bind-Mod
Γ ⊢A M : ∃ϑ̄ᾱ.C⇝ e

Γ ⊢A (moduleX = M) : (∃ϑ̄ᾱ.module X : C)⇝ repack♢ ⟨α, x⟩ = e in {ℓX = x}

Again, we can merge the two modes within one rule by using the mode-specific repacking.

3.4.7 Properties of elaboration

In this section we state and prove the soundness and correctness of the elaboration of Mω.
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Soundness

We start with a lemma regarding subtyping:

Lemma 6 (Soundness of subtyping). The coercion functions are well-typed in Fω. For sub-
typing between signatures, we have:

Γ ⊢ C ≺: C′⇝ f =⇒ Γ ⊢ f : C → C′ (3.1)

For subtyping between declarations, we have (without the syntactic sugar of declarations):

Γ ⊢ (ℓI : τ) ≺: (ℓI : τ ′)⇝ f ∧ =⇒ Γ ⊢ f : τ → τ ′ (3.2)

Proof. We proceed by induction on the typing derivation. The proof cases are immediate
applications of the typing rules of Fω.

• E-Sub-Decl-Val and E-Sub-Decl-Type are immediate (the coercion is the identity).
E-Sub-Decl-Mod is immediate by induction hypothesis.

• E-Sub-Decl-ModType: for module-types bindings, we use the fact that the kernel of
subtyping is a subset of type equivalence.

• E-Sub-Sig-Struct is immediate by induction hypothesis

• E-Sub-Sig-GenFct: we recall the rule:

E-Sub-Sig-GenFct
Γ, α ⊢ C ≺: C′[α′ 7→ τ ]⇝ f

Γ ⊢ () → ∃▼α.C ≺: () → ∃▼α′.C′⇝ λx.λu.unpack ⟨α, y⟩ = x () in pack ⟨τ , f y⟩ as ∃▼α′.C′

We have Γ, α ⊢ f : C → C′[α′ 7→ τ ] by induction hypothesis. From there,

Γ, (x : () → ∃▼α.C), α, y : C ⊢ (f y) : C′[α′ 7→ τ
]

(By F-App)
=⇒ Γ, (x : () → ∃▼α.C), α, y : C ⊢ pack ⟨τ , f y⟩ as ∃▼α′.C′ : ∃▼α′.C′ (By F-Pack)
=⇒ Γ, (x : () → ∃▼α.C) ⊢ unpack ⟨α, y⟩ = x () in pack ⟨τ , f y⟩ as ∃▼α′.C′ : ∃▼α′.C′

(By F-Unpack)

We conclude by two applications of F-Abs.

• E-Sub-Sig-AppFct is similar.

We then have the main soundness theorem:

Theorem 7: Soundness

When typing a module, the elaborated module term is well typed regarding Fω typing,
and the source module term is well typed regarding Mω typing.

Γ ⊢ M : ∃ϑ̄ᾱ.C⇝ e =⇒ Γ ⊢ e : ∃ϑ̄ᾱ.C ∧ Γ ⊢ M : ∃ϑ̄ᾱ.C
Γ ⊢ B : ∃ϑ̄ᾱ.D⇝ e =⇒ Γ ⊢ e : ∃ϑ̄ᾱ.

{
D
}

∧ Γ ⊢ M : ∃ϑ̄ᾱ.D
(3.3)
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Proof We proceed by induction on the typing derivation. The cases a mostly immediate
applications of Fω rules.

• Immediate cases: E-Typ-Mod-Arg and E-Typ-Mod-Var are immediate by F-Var. The
rules for value, type and module type bindings (E-Typ-Bind-Let, E-Typ-Bind-Type,
E-Typ-Bind-ModType) are also immediate by F-Record.

• E-Typ-Mod-AppFct: we recall the typing rule:

E-Typ-Mod-AppFct
Γ ⊢ S : λα.Ca (1) Γ, α, Y : Ca ⊢ M : ∃▽τ (β).C⇝ e (2)

Γ ⊢ (Y : S) → M : ∃▽λα.τ (β′).∀α.Ca → C
[
β 7→ β′(α)

]
⇝ lift∗(Λα.λ(Y : Ca).e)

By induction hypothesis on (2), we have:

Γ, α, Y : Ca ⊢ e : ∃▽τ (β).C

By F-Abs and F-Tabs, we have

Γ ⊢ (Λα.λ(Y : Ca).e) : ∀β.Ca → ∃▽τ (β).C

We conclude by F-LiftStar.

• E-Typ-Mod-GenFct and E-Typ-Mod-GenApp are immediate by induction hypothesis.

• E-Typ-Mod-AppApp, immediate by induction hypothesis, and using the subtyping
lemma.

Theorem 8: Completeness

Well-typed Mω terms and bindings can always be elaborated:

Γ ⊢ M : ∃♢ᾱ.C =⇒ ∃e, ϑ̄, Γ ⊢ M : ∃ϑ̄ᾱ.C⇝ e ∧ mode(ϑ̄) = ♢
Γ ⊢ B : ∃♢ᾱ.D =⇒ ∃e, ϑ̄, Γ ⊢ B : ∃ϑ̄ᾱ.D⇝ e ∧ mode(ϑ̄) = ♢

(3.4)

Proof Sketch. Soundness is by induction on the typing derivation. Completeness can be easily
established as the elaboration rules mimic the Mω typing rules with no additional constraints
on the premises, except for transparent existentials. However, these only appear on the types
of elaborated modules as a positive information, which is never restrictive. In particular, a
transparent existential type is always used abstractly and pushed in the context after dropping
the witness type exactly as an opaque existential type, i.e., as in Mω.

3.5 Abstract module-types

In this section we extend Mω with abstract signatures. We restrict abstract signatures to
simple abstract signatures (as presented in Section 1.4.3): abstract signatures can only be
instantiated by signatures that do not contain abstract module-type bindings. Yet, “simple”
is a bit misleading: the polymorphism that is provided by simple abstract signatures is not
just at the level of types, but also at the structure of types themselves. In the rest of this
section we refer to signatures that are not abstract as concrete signatures (they might contain
abstract signatures as fields)

In Section 3.5.1, we introduce the key points of the encoding of abstract signatures via
examples. In Section 3.5.2, we extend Fω (and Mω) with functions and tuples at the kind level
to represent the form of polymorphism provided by abstract signatures. In Section 3.5.3, we
present the extended typing rules of Mω.
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3.5.1 Key intuitions of abstract signatures

In this subsection we introduce the key intuitions of abstract signatures through examples.
The extensions presented here (mostly to the kind system) are given formally in Section 3.5.2.

Ascription Abstract signatures in positive positions are easy: they acts as existentially
quantified types. Informally, after ascription with the following left-hand side source signature,
we would get the right-hand side Mω signature (using the variable Ψ for an abstract signature
variable):

1 sigA
2 module type T = A.T
3 moduleX1 : A.T
4 moduleX2 : A.T
5 end

1 ∃(ℵ : ⋆).sig
2 module type T = Ψ
3 module X1 : Ψ
4 module X2 : Ψ
5 end

An important point here is that we do not need existential kinds: once the signature has been
abstracted away, the fact that it might have been parametric is not expressible anymore and
therefore, does not matter.

Kind polymorphism and flexroots Let us consider the following functor:
1 moduleF = (Y : sigA module type T = A.T module X : A.T end) → Y.X

As a first approximation, we could try an Mω signature of F of the following form:
1 module F : ∀(ℵ : ⋆)
2 sig module type T = Ψ module X : Ψ end → Ψ

Here, the abstract signature variable Ψ could be instantiated by any wellformed signature,
but there is a catch: if cannot by instantiated by a parametric signature (which is not of
kind ⋆), like λα.sig type t = α end. We could fix the signature of F to account for parametric
signatures with only type parameter:
1 module F : ∀(Ψ : ⋆ � ⋆).∀(α : ⋆)
2 sig module type T = λβ.(Ψβ) module X : (Ψα) end → (Ψα)

Every occurrence of the abstract signature introduces a new type variable (here, only α as
there is only once occurrence of T ) that is the corresponding parameter of the occurrence. But
what if the signature has several type parameters ? The functor should support any number
of type parameters. We can achieve this by using kind polymorphism6 ∀ω. , where the kind
variable ω can be instantiated to represent any arity. To represent arity at the kind level, we
introduce kind tuples that range from the empty kind tuple ∅ to an n-tuple ς1 × · · · × ςn. This
gives us the following kind-polymorphic signature for F (that subsumes the two signatures
presented before):

1 module F : ∀ω.(Ψ :ω� ⋆).∀(α :ω)
2 sig module type T = λ(β :ω).(Ψβ) module X : (Ψα) end → (Ψα)

The type variable α contains all the parameterized types of Ψ for the module X. This idea of
having one variable to hold all the type components of a signature is inspired by the (similar)
flexroot concept of Shao [1999]. In our setting, flexroots are not records but mere tuples,
and we abstract over the kind of the flexroot. Every occurrence of the abstract signature
introduces a corresponding flexroot, as every instance might be parameterized differently.

6We used kind polymorphism already in Section 3.4.5 for the implementation of transparent existentials as
a library in Fω. Then, it was only to have a completely internal presentation, without meta-notations. Here,
it is not to circumvent meta-notations, but really to express the right polymorphism.
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To illustrate this, we consider the following signature:
1 sigA module type T = A.T module X1 : A.T module X2 : A.T end

Here, X1 and X2 have the same signature, but it might be parameterized by different types:
each have its own flexroot. This gives the following signature:
1 Λω.λΨ, α1, α2.sig module type T = λα.(Ψα) module X1 : (Ψα1) module X2 : (Ψα2) end

By instantiation, we can get a signature where X1 and X2 have different types:
1 sig
2 module type T = λα.sig type t = α end
3 module X1 : sig type t = int end
4 module X2 : sig type t = bool end
5 end

Kind functions However, first-order kind polymorphism is not enough: due to the presence
of higher-order functors, we need higher-order kinds to express all possible forms of sharing
between an abstract signature in a functor’s codomain and the functor’s parameter. To see
why, let us consider this higher-order functor:
1 module type TA = sigA module type T = A.T module X : A.T end

2 moduleF = (Y : ((Y ′ : TA) → TA)) → structB end

The functor F could be applied to a functor that either produces a new abstract signature as
output or produces a concrete signature that depends on the parameter signature. Therefore,
the following signature would be incorrect:
1 module F :∀ω0.∀(Ψ0 :ω0 � ⋆).∀(α0 :ω0).
2 ∀ω1.∀(Ψ1 :ω1 � ⋆).∀(α1 :ω1).
3 (sig module type T = λ(β :ω1).(Ψ1 ω1) module X : (Ψ1 α1) end →
4 sig module type T = λ(β :ω0).(Ψ0 ω0) module X : (Ψ0 α0) end) → sig end

Indeed, with such signature the functor F could not take as input a functor that produces a
concrete signature. Here, we need to skolemize the kind variable to cover all possible cases,
turning ω0 into an higher-order kind Ω. Skolemization happens both at the kind and type
levels: Ψ0 and α0 are turned into kind-polymorphic higher-order types. This gives:
1 module F :∀Ω.∀(Ψ0 : ∀ω.(ω� ⋆)�ω� (Ωω)� ⋆).∀(α0 :∀ω.(ω� ⋆)�ω� (Ωω)).
2 ∀ω .∀(Ψ1 :ω� ⋆).∀(α1 :ω).
3 (sig module type T = λ(β :ω).(Ψ1 ω) module X : (Ψ1 α1) end →
4 sig module type T = λ(β : (Ωω)).Ψ1 ωΨ1 α1 β
5 module X : (Ψ0 ωΨ1 α1 (α0 ωΨ1 α1)) end) → sig end

Skolemization This introduction of higher-order kinds to treat higher-order functors via
skolemization strongly resembles Biswas [1995]’s introduction of higher-order types to treat
higher-order functors. While his type system does not have higher-order types (nor applicative
functors), he used skolemization to represent all the possible ways a functor’s codomain might
depend on its domain. This effectively introduces polymorphism over higher-order types, while
no higher order types are actually introduced. Similarly, we introduce higher-order kinds to
represent all the possible ways the kind of an abstract signatures in a functor’s codomain
might depend on its domain, while we do not have kind-parametric signatures.

3.5.2 Extension of Fω

The extended syntax of Fω is summed up in Figure 23. We extended the system in two ways:
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ℵ := • | ℵ ⇒ ℵ (meta-kinds)
ς := · · · | ∅ | (ς × · · · × ς) (small kinds)
κ := · · · | λ(ω : ℵ).κ | κκ (large kinds)
τ := · · · | ∅ | (τ × · · · × τ) (types)
Γ := · · · | (ω : ℵ) (environments)

Figure 23: Extension of Fω with kind functions, kind tuples and meta-kinds.

• Kind tuples: We add n-ary kind tuples, with the empty tuple being written ∅. At the
level of types, we add the corresponding empty-tuple type ∅, and the n-ary constructor
for type tuples. Those type tuples are not the type of tuples of core language! They are
not at the base kind ⋆, i.e., not term has a type that has a tuple kind.

• Kind functions and meta-kinds: We add kind-level lambda and kind applications.
In addition, we add an extra layer to “type kind expressions”, which we call meta-kinds
and are denoted with ℵ. The base meta-kind is •, its the type of plain kinds. Kind
function have an arrow meta-kind, written ℵ ⇒ ℵ. It is not the meta-kind of arrow
kinds κ�κ′ (the kind of type operators), which are of the base meta-kind •, but of
kind-level functions. Kind tuples have a special meta-kind, which indicates the arity of
the tuple. It is written ×n.

We add the corresponding typing rules, along with a new judgment of kind-wellformedness,
written Γ ⊢ κ : ℵ, in Figure 24. The kind-wellformedness rules are very similar to the type-
wellformedness rules of Fω, just pushed one level higher. All the kinds previously considered
(the base kind ⋆, kind arrows and polymorphic kinds) are at the base meta-kind •. Only kind
functions are at an higher meta-kind. The rule for kind application is standard. There are no
rules for wellformedness of meta-kinds, they are always wellformed. We introduce β-reduction
at the kind level to reduce kind applications:

(λ(ω : ℵ).κ)κ′ ⇝β κ
[
ω 7→ κ′

]
We consider kinds up the equivalence defined by the reflexive, symmetric and transitive cloture
of β-reduction and renaming of bound kind variables. We extend type-equivalence to inject
kind equivalence. The other rules of Fω typing are unchanged, except for the kind variables
that appear with a meta-kind. Finally, we preferably use the variable Ψ for abstract signatures
variables for the sake of readability, but it should be read as a normal type variable of the
collection α.

Module-type declarations of Mω For a technical reason that we detail in the next section,
we need to change the encoding of the module-type fields of signatures and structures. Up
until now, signatures where stored in module-type fields as parametric types, following Russo
[2004]:
1 module type T = λα.C

We switch back to existentially quantified signatures, in the style of Rossberg et al. [2014]:
1 module type T = ∃▼α.C

The two presentation are more-or-less equivalent. The only difference lies in the fact that,
with existential signatures, the transformation of the binder from ∃ to ∀ when the signature
is used for a functor parameter did not have a logic interpretation. This is a minor technical
detail.
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Γ ⊢ ⋆ : •
(ω : ℵ) ∈ Γ

Γ ⊢ ω : ℵ
Γ ⊢ κ : • Γ ⊢ κ′ : •

Γ ⊢ κ�κ′ : •
Γ, (ω : ℵ) ⊢ κ : •
Γ ⊢ ∀(ω : ℵ).κ : •

∀i ∈ J1, nK . Γ ⊢ ςi : •
Γ ⊢ ς1 × · · · × ςn : •

Γ, (ω : ℵ) ⊢ κ : ℵ′

Γ ⊢ λ(ω : ℵ).κ : ℵ ⇒ ℵ′

Γ ⊢ κ : ℵ′ ⇒ ℵ Γ ⊢ κ′ : ℵ′

Γ ⊢ (κκ′) : ℵ

(a) Wellformedness of kinds

∀i ∈ J1, nK . Γ ⊢ τi : κi
Γ ⊢ τ1 × · · · × τn : κ1 × · · · × κn

Γ ⊢ ∅ : ∅

(b) Extension to type-wellformedness of Fω (in addition to the rules of Figure 18)

Figure 24: Extension of Fω wellformedness

3.5.3 Typing rules

Equipped with this extension of the type system, we can present the typing rules for Mω.
For the sake of readability, we leave meta-kinds and most kinds implicits. The core change
is in the signature elaboration, where we use higher-order kinds to represent all the possible
instantiation of a signature. The key mechanisms for kind variables are similar to type vari-
ables: the variables are introduced, extruded and skolemized. In addition, there is a specific
mechanism of lowering that removes kind parametricity in positive position. We discuss the
key rules and mechanisms below.

Introduction The only point where kind-parametric abstract module types are introduced
is at an abstract module-type binding:

M-Typ-Decl-ModTypeAbs
Γ ⊢A (module type T = A.T ) : Λω.λ(Ψ :ω� ⋆).module type T = λ(α :ω).(Ψα)

The abstract signature variable Ψ is lifted, while the set of type parameters α is left inside
the module type declaration. As we can see on this rule, elaboration of signatures (and dec-
larations) not only a parametric signature but a kind-parametric, type parametric signature
of the form Λω.λα.C.

Extrusion When combining declarations together in a sequence, the kind variables are
merged together in front of the declarations as displayed by the following rule:

M-Typ-Decl-Seq
Γ ⊢A D1 : Λω1.λα1.D1 Γ, ω1, α1, A.D1 ⊢A D2 : Λω2.λα2.D2

Γ ⊢A D1, D2 : Λω1, ω2.λα1, α2. D1,D2

Skolemization When elaborating the signature of an applicative functor, we skolemize both
the kind variables and the abstract type variables (which contain abstract signature variables)
of the functor’s body (written here with kinds to explicit the skolemization):

M-Typ-Sig-AppFct
Γ ⊢ S1 : Λω1.λα1.C1 Γ, ω1, α1, (Y : C1) ⊢ S2 : Λω2.λ(α2 :κ2).C2

Γ ⊢ (Y : S1) → S2 : Λω
′
2.λ(α

′
2 :∀ω.κ2).

(
∀ω1.∀α1.C1 →

(
C2
[
ω2 7→ (ω′

2 ω1)
][
α2 7→ (α′

2 ω1 α1)
]))

The kind variables coming from the functor’s body ω2 are skolemized into ω′
2, and each

occurrence ω2 is replaced by (ω′
2 ω1). Abstract type variables coming from the functor’s



102 CHAPTER 3. M ω

body (α2 :κ2) are turned into kind-polymorphic higher-order types (α′
2 : ∀ω.κ2); each occur-

rence α2 is replaced by (α′
2 ω1 α2). Finally, we can see that the lambda quantification of the

functor domain is turned into an universal quantification.

Lowering A new mechanism specific to kind variables is lowering. If we consider type
parameters of signature that are bound by a lambda binder, they are either turned into
universal quantification when the signature is used as functor parameter, or into existential
quantification when the signature is used for ascription or as the codomain of a generative
functor. Kind variables behave differently. While we still want kind-parametricity for functors
(as displayed above), we do not want existential kinds when using a kind-parametric signature
for ascription or the body of generative functors. We use instead lowering to remove kind
parameters, and “lower” them to the base kind ⋆. Let us start with the rule for signature of
generative functors:

M-Typ-Sig-GenFct
Γ ⊢ S : S S = Λω.ΛΨ.λα.λβ.C S ↓ = ∃▼(Ψ′ : ⋆), β.S (∅ (λ(γ :∅).Ψ′)∅)β

Γ ⊢ () → S : S ↓

First, the codomain signature S is elaborated. We reorder the types and kind variables to
group together each kind variable ω with the associated signature variable (Ψ :ω� ⋆) and the
flexroots α. The other type variables β are left untouched. Then, we introduce a new abstract
signature variable (Ψ′ : ⋆) at the base kind for each abstract signature variable Ψ (which might
be at an higher kind). Finally, we get the lowered signature S ↓ by instantiating in S :

• each kind variables ω by the empty tuple kind ∅
• each abstract signature variable Ψ by the constant type function (λ(γ :∅).Ψ′)
• each flexroot α by the empty tuple type ∅; higher-order flexroots are instantiated by

constant type functions that return the empty tuple: λ(_ :∅).∅

Lowering and subtyping The rule for ascription in module expressions M-Typ-Mod-Ascr
also features lowering:

M-Typ-Mod-Ascr
Γ ⊢ P : C Γ ⊢ S : S S = Λω.ΛΨ.λα.λβ.C

S ↓ = λΨ′, β.S (∅ (λ(γ :∅).Ψ′)∅)β Γ ⊢ C < (S ↓ (∃▼α.C′) τ)

Γ ⊢▽ (P : S) : ∃▽Ψ′, β.
(
S ↓ Ψ′ β

)

The elaborated signature S is lowered into S ↓ similarly to M-Typ-Sig-GenFct. Then, the
subtyping is checked between the signature C of the path P and the lowered signature, instan-
tiated by a list of concrete types τ and a list of existential signatures ∃▼α.C′. The returned
signature is the lowered one S ↓, with an eta-expansion to turn the lambda binder into an ex-
istential one. Subtyping between the lowered signature S ↓ rather than the kind-polymorphic
signature S is more restrictive – there are programs that would not typecheck – but we do
it to prevent the introduction of existential kinds. To understand why the instantiation with
existential signatures works, we show the rule in action on an example.
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Example 3.5.1. We show the Rule M-Typ-Mod-Ascr in action. Let us assume that the
path P has the following signature C:

1 C ≜ sig
2 module type T = ∃▼α.sig type t = α end
3 module X1 : sig type t = int end
4 module X2 : sig type t = bool end
5 module F : ∀β.sig type t = β end → sig type t = (β list) end
6 end

Now, we consider the signature S and its elaboration S :

1 S ≜ sigA
2 module type T =
3 sigB type t = B.t end
4 moduleX1 : A.T
5 moduleX2 : A.T
6 moduleF : (Y : A.T ) → A.T
7 end

1 S ≜ Λω.λ(Ψ :ω� ⋆).λα1, α2, φ .sig
2 module type T = ∃▼α.(Ψα)
3

4 module X1 : (Ψα1)
5 module X2 : (Ψα2)
6 module F : ∀β.(Ψβ) → (Ψ (φβ))
7 end

Here, we do no want to instantiate the signature S directly, as we would get as output a
signature with an existential kind. Instead, we first lower the signature to S ↓, defined as :

S ↓ ≜ λ(Ψ′ : ⋆).(S ∅∅∅ (λ(_:∅).∅))

After β-reduction of the empty-tuple type arguments, we obtain the following:

1 S ↓ ≜ λ(Ψ′ : ⋆).sig
2 module type T = Ψ′

3 module X1 : Ψ
′

4 module X2 : Ψ
′

5 module F : Ψ′ → Ψ′

6 end

Finally, before subtyping C and S ↓, we instantiate the latter with (∃▼α.sig type t = α end).
The subtyping is then made field by field. For the module fields, we have:

module X1 : sig type t = int end < ∃▼α.module X1 : sig type t = α end
module X2 : sig type t = bool end < ∃▼α.module X2 : sig type t = α end

This is shown easily by instantiating α with int and bool respectively. For the functor field,
we have the following successive subtyping relations:

module F : ∀β.sig type t = β end → sig type t = (β list) end
< module F : ∀β.sig type t = β end → (∃▼α.sig type t = α end) (1)
< module F : (∃▼β.sig type t = β end) → (∃▼α.sig type t = α end) (2)

The subtyping relation (1) is normal covariance and instantiation, while (2) is justified by the
fact the parameter’s signature is universally quantified, and that β does not appear free in the
codomain:

(∀α.σ → τ) < (∃α.σ) → τ (α /∈ fv(τ))

Finally, the result signature is S ↓ with a (transparent) existential quantifier:

Γ ⊢ (P : S) : ∃▽Ψ′.(S ↓Ψ′)

Overall, the instantiation by an existential signature creates a signature where abstract types
have been “un-extruded” and “un-skolemized”, and this signature is a supertype of C. But those
abstract types are hidden away in the resulting signature, abstracted by Ψ′. If “un-extrusion”
and “un-skolemization” is not possible, then the subtyping fails and there is a typechecking
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error. This would happen for instance with the following signature (inside C):
1 module F : sig type t = int end → sig type t = (int list) end

The subtyping step (1) would still work, but (2) would fail: it would make the functor more
polymorphic than it really is!

Functor application The last technical point is the following rule for functor application:

M-Typ-Mod-AppApp
Γ ⊢ P : ∀ω′.∀α.Ca → C Γ ⊢ P ′ : C′ Γ ⊢ C′ < Ca[α 7→ τ ] [ω 7→ ς]

Γ ⊢ P (P ′) : C[α 7→ τ ] [ω 7→ ς]

Here, we extend the instantiation mechanism of subtyping to support both instantiation of
kinds and instantiation of types. The instantiation of kinds is guided by the module-type
fields and does not pose a problem for decidability.

Discussion We believe this extension of Mω supports the main use-cases for abstract sig-
natures. It adds some complexity, but overall the treatment of kind variables is quite similar
to type variables. However, if we where to relax the simple abstract signatures criterion and
allow instantiation of abstract signatures by signatures containing abstract module-types, the
system would become much more involved. Simple abstract signatures can be seen as the
level 1 of predicative instantiation. At level 2, we would already need higher-order meta-
kinds and several more quantified variables. We believe that the added complexity is not
justified regarding the absence of known use-cases.

3.6 Discussion

Mω signatures are more expressive than source signature, but they may also keep too much
information, revealing the history of the module operations. This may lead to an inferred
signature that is not anchorable, while intuitively providing the same type-sharing information
as a simpler, anchorable signature. This typically happens when a type variable has become
“unreachable”, only appearing in sub-expressions. We have identified two such patterns.

In the following, we use the notation C[α, . . . ] to indicate that α appears freely in C and
the notation C[(φα), . . . ] to indicate that α appears only in the subexpression (φα). In
particular, C[φ, (φα)] means that α only appears as an argument of φ in C.

Loss of a type argument. The signature ∃φ, α. C[φ, (φα)], could be obtained by exporting
a functor (providing φ) along with a type obtained by applying this functor to an argument
that has latter been hidden. The application φα keeps trace that the type was obtained by
applying φ to α. However, since the argument α is not accessible, this information became
useless. By subtyping, we could safely give the module the simpler signature ∃φ, β. C[φ, β]
cutting the (original) link to the functor , which we can state as a subtyping relationship:

∃φ, α. C[φ, (φα)] ⪯ ∃φ, β. C[φ, β]

Anchoring the left-hand side will fail since α cannot be anchored, while anchoring the right-
hand might succeed. We do not currently allow this simplification during anchoring, since both
signatures are not isomorphic in Fω as there is no coercion going in the opposite direction.

Loss of a type operator. Similarly, the application of a functor may be exported while the
functor itself became unreachable. For instance, with two applications of the same functor,
we may have a signature of the form ∃φ, α, β. C[α, β, (φα), (φβ)], which is a subtype of, but
not isomorphic to ∃α, β, α′, β′. C[α, β, α′, β′]. In the special case where the functor is called
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only once, the signature would be of the form ∃φ, α. C[α, (φα)], which is actually isomorphic
to ∃α, α′. C[α, α′].





Chapter 4

ZipML

Overview In this paper, we propose ZipML, a fully-syntactic specification of an OCaml-
like module system that supports both generative and applicative (higher-order) functors,
opaque and transparent ascription, type and module-type definitions, extended with trans-
parent signatures and the new concept of signature zippers.

Floating fields follow the way the user would solve signature avoidance manually, by adding
extra fields in structures. However, while this pollutes the namespace with fields that were
not meant to be visible, ZipML floating fields are added automatically and can only be used
internally: they are not accessible to the user and are absent at runtime. We also propose an
internal mechanism to simplify floating fields and drop them after they became unreferenced.
This mechanism is actually an internalized, improved counterpart of the signature avoidance
resolution of Mω.

Our contributions are:

• The introduction of a syntactic type system for a full-fledged OCaml-like module lan-
guage, including both generative and applicative functors, and extended with transpar-
ent ascription.

• A new concept of floating fields, implemented as signature zippers, that enables to in-
ternalize and avoid or delay signature avoidance.

• An equivalence criterion for signature avoidance resolution without loss of type sharing,
along with the description of an algorithm to compute such resolution.

• A formal treatment of type and module type definitions that are kept during inference
and in inferred signatures.

• A regular, delayed treatment of strengthening that prevents useless inlining of module
type definitions and increases sharing inside the typechecker.

• A soundness proof by elaboration of ZipML into Mω.

107
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4.1 Elaboration vs Fully Syntactic systems

Yet, ML modules system remained a case of advanced theoretical work that has not yet
made it into real-world implementation: the SML and OCaml compilers are not based on an
elaboration in Fω. Notably, OCaml relies on a path-based system, initially described by Leroy
[1995, 1994], which has not been extended to more complex constructs. The SML compiler
has an official specification Milner et al. [1997] that has also evolved over the years, but not
towards an elaboration in Fω (see MacQueen et al. [2020] for more details). Furthermore, the
F-ing (Rossberg et al. [2014]) approach lead to a significant gap between the user writable
“source” signatures and their internal representations in Fω. Users are either, required to think
in terms of the elaboration, while still writing types in the surface language, or rely only on
the syntactic types as the internal representation is hidden away with a reverse translation.
The first option seemed unsatisfactory, as the elaboration can be quite involved and may
pollute the typing environment with a lot of variables. For the second option, the reverse
translation called anchoring Blaudeau et al. [2024] is non trivial: it must undo the extrusion
and the skolemization of existential types to rebuild abstract type fields. In practice, it poses
some challenges:

• The reverse translation can fail because the elaboration language is more expressive than
the source ML signatures, and some inferred signatures are not expressible in the source
signature syntax. This issue, called signature avoidance, is discussed in more details
below. Those cases would trigger a specific class of typechecking errors which might be
tricky to grasp for the user, as it might require to expose the internal representation.

• For printing messages in case of other typechecking errors (not due to avoidance), the
reverse translation should be extended to invalid signatures, which might again be prob-
lematic.

• Even when the typechecking succeeds, the Mω Blaudeau et al. [2024] type-system com-
bined with the anchoring is not fully syntactic in the sense of Shao [1999]: if a module
expression admits a signature, not all sub-expressions necessarily do. This might be
counter-intuitive for the user, as the simple act of exposing a sub-module would make
the system fail in non-trivial ways.

However, it is not surprising that the elaboration approach was appealing: purely syntactic
systems for ML modules are known to be tricky to design, often leading to large systems with
numerous rules, and hard to prove sound, often requiring complex semantic objects. Among
other, we refer the reader to Harper et al. [1989]; Harper and Lillibridge [1994]; Dreyer et al.
[2003]. We identify four main challenges, of increasing difficulty. 1. Prevent inlining of
intermediate type and module type definitions. This is crucial to print concise interfaces
respecting user intent. This aspect has been left behind in the whole F-ing (Rossberg et al.
[2014]) line of works so far. 2. Handle applicative functors and module identities. 3. Maintain
proper sharing of types, notably via a rewriting rule called strengthening Leroy [1994]. 4. Solve
the signature avoidance problem.

In the rest of this introduction, we briefly discuss our design for a new syntactic module
system with an OCaml-like syntax called ZipML that solves those issues, starting with
avoidance.

4.2 An introduction to floating fields

The main novelty of ZipML is the introduction of floating fields as a way of dealing with the
signature avoidance problem. Floating fields provide additional expressiveness that allows to
describe all inferred signatures.
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We use OCaml-like syntax Leroy et al. [2023] for examples. However, we use self-
references for signatures1 to refer to other components of themselves. That is, while we
would write in OCaml, e.g.,:

1 sig type t type u = t → t val f : u end

we instead write:

1 sig (A) type t = A.t type u = A.t → A.t val f : A.u end

The first occurrence of A is a binder that refers to the whole signature, so that all internal
references to a field of that signature go through this self-reference. This is also used for
abstract types who are represented as aliases to themselves as type t = A.t.

For sake of readability and conciseness, we also extend the syntax with the following syn-
tactic sugar that is not available in OCaml. Since OCaml only allows projection on paths
P.X2, the general case M.X must be encoded as let Z = M in Z.X where let Z = M1 in M2

may itself be encoded in OCaml as struct open (struct module Z = M1 end) include M2 end.
Signature avoidance is best illustrated on projections, using these syntactic extensions.

Typically, signature avoidance occurs when a type t that appears in the inferred signature
become out of scope after projection:

1 let module M = struct
2 type t module Z = struct let l : M.t list = [] end
3 end in M.Z
1 The value "l" has no valid type if "M" is hidden.

Instead, ZipML will return the following signature:3

1 < B : type t = B.t > sig (A) val f : B.t end

The highlighted expression is what we call a floating field; it is not a signature, but the content
of a signature that is bound to the self-reference B.

Intuitively, this type is obtained as follows. Before projection, the signature of M is:

1 sig (B) type t = B.t module Z : sig (A) val l : B.t list end end

When projecting on field Z, we would like to return sig (A) val l : B.t list end, which is
however ill-formed as it refers to field t that has been lost. The solution is to keep the type
of t as a floating field, which gives exactly the signature just above.

Another typical situation of signature avoidance is when a hidden type as t is used deeper
in another type definition as in:

1 (struct type t module Z = struct type u = t list type v = t list end end).Z

1 sig (A) type u type v end (* over-abstaction *)

Here, instead of failing, OCaml returns two abstract types u and v, not only loosing their
list structure, but also also forgetting that these are actually equal types. We say that this
is erroneously solved by over-abstraction. In ZipML, we would first return the following
signature:

1 < B : type t = B.t > sig (A) val type u = B.t list type v = B.t list end

This is a correct answer. In particular, no information has been lost. The signature may be
simplified using signature equivalence: since A.v is equal to A.u it can be made an alias to A.u.

1ZipML also uses self-references in structures, but we do not in examples to keep closer to OCaml syntax.
2This limitation encourages users to name intermediate structures, circumventing the avoidance problem.
3By default, input programs are colored in blue; errors in red; output signatures in green with zippers in

yellow. We may still temporarily used other colors for to emphasize specific subexpressions.
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1 < B : type t = B.t > sig (A) val type u = B.t list type v = A.u end

Still, we cannot get rid of the floating component here. This does not matter however as
typechecking may continue with floating components, which are integrated into the type
system.

4.2.1 Typechecking with floating fields

We demonstrate the process of typechecking with floating fields on a concrete example show-
cased below. In this example, we define a module M with some nested submodules and type
aliases. Finally, we project a deeply nested module M.Y.Z. If type inference proceeds too
rashly, this projection will lead to loss of type information, as type aliases might be forgotten.
Indeed, this is exactly what happens in current OCaml, which erroneously solves signature
avoidance by forgetting the information that fields v and w are actually the same abstract
type.

1 let M = struct
2 module X = struct type t end
3 module Y = struct type u = X.t list module Z = struct type v = X.t type w = u end
4 end in
5 M.Y.Z
1 sig type v type w end

In ZipML, we first return the following signature S0 with floating fields:

1 < D : module X : sig (A) type t = A.t > < B : type u = D.X.t list >
2 sig (C) type v = D.X.t type w = B.u end

which we then simplify to this equivalent final form S1:

1 sig (C) type v type w = C.v list end

We explain this process step by step. Let us first look at the signature S0: the first line
introduces two local typing environments of floating fields that may be directly referenced
from the signature that is returned on the second line. Floating fields are not present at
runtime. Hence, their order does not matter except for well-formedness, and they may be
dropped when not referenced anymore.

To understand how S0 was generated, let us look at the signature of M , before the pro-
jection:

1 M : sig (D)
2 module X : sig (A) type t = A.t end
3 module Y : sig (B)
4 type u = D.X.t list
5 module Z : sig (C) type v = D.X.t type w = B.u end
6 end
7 end

It is of the form SD
[
SB [SZ ]

]
, where the signature SZ is placed in the context SD

[
SB [·]

]
where SD and SB are the outer and inner contexts. Unfortunately, the signature SZ that we
would like to return for the projection M.Y.Z is ill-formed, as it refers to both outer contexts
SD and SB. This situation is an instance of the signature avoidance problem: we want to
return SZ while avoiding to mention the unreachable fields from SD and SB. It is usually
solved by rewriting the signature SZ into an equivalent signature that does not depend on the
context—whenever this is possible and fail otherwise.

We take a different stance: we type the projection by returning a zipper of the surround-
ing context ⟨SD [SB]⟩ SZ , or equivalently, ⟨D : SD⟩ ⟨B : SB⟩ SZ . Thus, projection never fails,
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avoiding (or delaying) the signature avoidance problem. The zipper notation gives an imme-
diate access to SZ but still allowing SZ to refer to its local contexts SD and SB.

Let us proceed and type projections one after the other. For the first projection M.Y, we
return the signature S2 equal to ⟨D : SD⟩ (SB [SZ ]), which is, in concrete syntax:

1 < D : module X : sig (A) type t = A.t end > SB [SZ ]

We actually dropped the access to the hole in module X = [·] as well as the field following the
hole, since they all become useless after the projection. For the second projection (M.Y).Z
we proceed similarly. Projecting M.Y of type SB [SZ ] on Z, we get ⟨B : SB⟩ SZ . Popping the
local environment SD, we then return the signature ⟨SD⟩ ⟨SB⟩ SZ , which exactly corresponds
to the signature S0 returned by ZipML before simplification (given above).

Interestingly, each component of the zipped context SD and SB can be directly accessed
from SZ via their self-reference names, respectivelyD and B. Hence SZ need not be changed—
provided we have chosen disjoint self-references while zipping.

The next step to is transform S0 into an equivalent but simpler signature, that is, one with
fewer floating fields. We may first inline B.u in the field w of SZ , leading to the signature:

1 < D : module X : sig (A) type t = A.t end > < B : type u = D.X.t list >
2 sig (C) type v = D.X.t type w = D.X.t list end

The floating component B is now unreferenced from the signature C and can be dropped.
Since the type C.v is equal to D.X.t, the field C.w can be rewritten as C.v list. We obtain
the signature S3:

1 < D : module X : sig (A) type t = A.t end > sig (C) type v = D.X.t type w = C.v list end

The signature can be read back as the projection of the unzipped signature (using some
reserved field Z for the lost projection path).

1 (sig (D) module X : sig (A) type t = R.v end
2 module Z : sig (C) type v = D.X.t type w = C.v list end end).Z

Currently C.v is an alias to the floating abstract type D.X.t, which comes first. However,
since the module X should be understood as a floating field not present at runtime, we may
move it after field Z, making C.v become the defining occurrence for the abstract type and
let D.X.t be an alias to C.v. The key here is that the two unzipped signatures are subtype of
one another, hence equivalent.

1 (sig (D) Z : sig (C) type v type w = C.v end module X : sig (A) type t = R.v end end).Z

We can represent the displacement of fields directly on zippers, provided we enrich them to
contain two parts, which we separated by ///: before and after the position of interest:

1 < D : / module X : sig (A) type t = R.v end > sig (C) type v type w = C.v end

The key is that floating fields that come after the hole can always be dropped as they are not
present at runtime and no longer referenced from the signature. Here, the resulting zipper D
contains no more fields and can be dropped altogether. We then obtain exactly the signature
S1 (repeated below), which is thus equivalent to S3 and then to S0.

1 sig (C) type v type w = C.v list end

In this case, we were able to eliminate all floating fields and therefore successfully and
correctly resolve signature avoidance, while OCaml incorrectly removes the equality between
v and w types. In general, the simplification may remove some but not all floating fields. This
is fine, as we are able to pursue typechecking in presence of floating fields, which may perhaps
be dropped later on. For example, while S3 could be simplified by removing its floating field,
this was not the case of the signature S2, since the floating field D.X.t is referenced in SB [SZ ]
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Path and Prefix
P ::= Q.X (Module)

| Y (Module Parameter)
| P (P ) (Applicative application)
| P.A (Zipper access)

Q ::= A | P

Module Expression
M ::= P (Path)

| M.X (Anonymous projection)
| (P : S̃) (Ascription)
| P () (Generative application)
| () → M (Generative functor)
| (Y : S̃) → M (Applicative functor)
| structA B end (Structure)

Binding
B ::= letx = e (Value)

| type t = u (Type)
| moduleX = M (Module)
| module type T = S̃ (Module type)

Core language types and expression
e ::= · · · | Q.x (Qualified value)

Identifier
I ::= x | t | X | T | Y

Contexts
Γ ::= ∅ | Γ, A.I : S | Γ, Y : S | Γ, γ

Zippers
γ ::= ∅ | A : D | γ ; γ

Signature
S ::= ⟨γ⟩ S (Zipped type)

| S̃ (Unzipped type)
S̃ ::= (= P < S̃) (Transparent signature)

| Q.T (Module type)
| () → S (Generative functor)
| (Y : S̃) → S (Applicative functor)
| sigA D end (Structural signature)

Declaration
D ::= valx : u (Value)

| type t = u (Type)
| moduleX : S (Module)
| module type T = S̃ (Module type)

u ::= · · · | Q.t (Qualified type)

Figure 25: Syntax of ZipML

as D.X.t before being aliased. If we disallowed floating fields, we would have failed at that
program point—or used over abstraction as in OCaml in this case and probably failed later
on as a consequence of over-abstraction.

Interestingly, when typechecking an ascription (M : S), the type returned in case of success
will be the elaboration of the source signature S, which never contains floating fields. Thus, an
OCaml library defined by an implementation file M together with an interface file S will never
return floating fields in ZipML, even if internally some signatures will carry floating fields.
In other cases, we may return an answer with floating fields, giving the user the possibility
to remove them via a signature ascription. As a last resort, we may still keep them until link
time—or fail, leaving both options to the language designer—or the user.

4.3 Formal presentation

4.3.1 Grammar

The syntax of ZipML is given in Figure 25. It reuses the syntax of OCaml, but with a
few differences in notation, the addition of transparent ascriptions, and our key contribution:
signatures with floating fields, also called zippers.

As meta-syntactic conventions, we use lowercase letters (x, t, . . . ) for elements of the core
language, and uppercase letters (X, T , . . . ) for modules. We also use slanted letters (I, A,
Q, . . . ) for identifiers and paths and upright letters (M, e, D, . . . ) for syntactic categories.
Finally, we designate lists with an overbar, such as a list of bindings B. Let us now walk
through these syntactic categories.
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Classical Module Constructs As in OCaml, the module language is based on structures,
signatures, functors and projections. These can be found in the Module Expressions (M)
and Signatures (S), and the usual module fields (expression, types, modules, module types)
in Bindings (B) and Declarations (D). As in OCaml we use a special unit argument to
distinguish generative functors from applicative functors, in both module expressions and
signatures. Both structures and signatures are annotated with a self-reference A, explained
below. Signatures contain a new form (= P < S̃) for a transparent signature which has them
the identity of P but with the interface of S. Transparent signatures allow to express both
aliasing and transparent ascription.

Self-references A special class of identifiers A range over self-references, which are variables
used in both module structures structA B end and structural signatures sigA D end to refer
to the structure or the signature itself from fields B or D: The annotation is the binding
occurrence, their scope extends to B or D, and they can be consistently renamed. This avoids
the standard telescope notation and facilitates renaming operations. Thanks to self-references,
field names are no longer binders and behaves rather as record fields. We do not allow
overriding of fields in signatures, which is standard in module systems. By contrast with
common usage, we also avoid overriding in structures and therefore require all field names to
be disjoint in the same structure, for sake of simplicity. This restriction is just a matter of
name resolution that has little interaction with typechecking and could easily be relaxed.

Self-references are also used to represent abstract types: all type fields are of the form
type t = u where u may be a core language type or an alias P.t including the case A.t where
A is the self-reference of the field under consideration, which in this case means that A.t is
an abstract type.

We may omit the self-reference and just write sig D end for sigA D end when A does not
appear free in D. Conversely, when we write sig D end, we should read sigA D end where the
anonymous self-reference A is chosen fresh for D.

Identifiers and Paths Paths P are a hybrid mechanism to access modules, statically.
By static, we mean that we always know statically the identity of the module a path refers
to. They may access the environment directly, either functor parameters Y or module fields
A.I where I spans over any identifier. They may also access module fields by projection
P.X. In the absence of applicative functors and floating fields, this would be sufficient. With
applicative functors, a path may also designate the result of an immediate module application
P (P ). Finally, floating environments are accessed with P.A. The letter Q designates paths
that are either local (A) or distant (P ). We also extend the core language with qualified
values Q.x and types Q.t.

Note that we distinguish module names X from module parameters Y . The latter are
variables, can be renamed (when in binding position), and will be substituted during type-
checking. By contrast, names are never used in a binding position.

Contexts Typing contexts Γ bind module fields to declarations and functor parameters to
signatures. In typing contexts module fields are always prefixed by a self-reference. As we
disallow shadowing, every A.I in Γ must be unique. For convenience, we may write Γ, A.D for
the sequence Γ, A.D. Finally, context, may also contain floating fields Γ, γ. By associativity,
we identify Γ, (A.D, A′.D

′
) and (Γ, A, D), A′.D

′.

Zippers Finally, the novelty is the introduction of zipped signatures ⟨γ⟩ S used to introduce
zippers γ, which are sequences of floating fields A : D. In a zipped signature ⟨A : D⟩ S, the
self-reference A, which is used to access fields of D from S, can be renamed consistently. That
is, we identify

〈
A : D

〉
S and

〈
A′ : D[A 7→ A′]

〉
S[A 7→ A′] provided A′ is fresh for D and S. Of
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course, a zipper taken alone cannot be renamed. The concatenation of zippers γ1 ; γ2 is only
defined when the domains of γ1 and γ2 are disjoint where their domain is defined as follows:

dom(∅) = ∅ dom(A : D) = {A} dom(γ1 ; γ2) = dom(γ1) ⊎ dom(γ2)

We may then see a zipper as a map from self-references to declarations and define γ(A)
accordingly. The concatenation of zippers “;” is associative and the empty zipper ∅ is a
neutral element. We identify S and ⟨∅⟩ S and ⟨γ1⟩ ⟨γ2⟩ S and ⟨γ1 ; γ2⟩ S whenever γ1 and
γ2 have disjoint domains. Therefore a signature S can always be written as ⟨γ⟩ S̃ where S̃

is an unzipped signature and γ concatenates all consecutive zippers or is ∅ if none. The
introduction of zippers requires a new form of path P.A, invalid in source programs, to access
floating fields.4 Finally, we define S̃ as signature without an initial zipper but where subterms
may contain zippers. Note that zipper may not appear under a transparent ascription or a
functor parameter.

Invariants We also define several syntactic subcategories of signatures to capture some
invariants.5 The head value form Sv of a signature gives the actual shape of a signature,
which is either a structural signature or a functor. The head normal form Sn is similar, but
still contains the identity of a signature, if it has one, via a transparent ascription.

Sv ::= sigA D end | (Y : S) → S | () → S Sn ::= Sv | (= P < Sv)

Notice that head normal forms (and value forms) are superficial and signatures appearing
under value forms may themselves be any signature. Hence, they may contain inner zippers.

A Transparent signature S is a generalization of the syntactic form (= P < S̃) that also
allows transparent ascriptions to be placed inside zippers. The definition is the following:

S ::= ⟨G⟩S | S̃ S̃ ::= (= P < S̃) G ::= A : D | G ;G | ∅
D ::= moduleX : S | valx : u | module type T = S | type t = u

Finally, we let P̃ stand for paths P that do not contain any (direct or recursive) zipper access
(of the form P ′.A). Consistently, Q̃ means P̃ or A and ũ means u where all Q’s are actually
Q̃’s.

Syntactic choices and syntactic sugar Our grammar has some superficial syntactic re-
strictions, i.e., that simplifies the presentation without reducing expressiveness. In particular,
we only allow applications of paths to paths. The more general application M1(M2) may be
encoded as syntactic sugar for (structA module X1 = M1 module X2 = M2 module X =
A.X1(A.X2) end).X. Indeed, our projection M.X is unrestricted. By contrast, OCaml re-
quires M to be a path P and must encode general projection with an application. Our choice
is more general, as it does not require any additional type annotation.

Similarly, M is currently restricted to be a path P̃ in ascription (M : S̃), but the general
case can be encoded as (structA module X1 = M module X = (A.X1 : S̃) end).X.

Note some grammatical ambiguity: P.X may be a projection from a path P or from a
module expression M which may itself be a path. This is not an issue as their typing will be
the same.

4In the absence of floating fields, self references could only be at the origin of a path Q.
5For sake of readability, we do not always use the most precise syntactic categories and sometimes just

write S when S may actually be of a more specific form. Conversely, we may use subcategories to restrict the
application of a rule that only applies for signatures of a specific shape.
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4.3.2 Full zippers

In fact, the zippers we have defined are partial zippers, a special case of full zippers. Full
zippers are only used in Section 4.4, but introducing them now helps illustrate the role and
treatment of floating fields as zippers. In full zippers, floating components are of of the form
A : D·X ·D′. That is, the field they store are split into before-fields and after-fields separated by
a module name. We may define an unzip operation on full zippers that rebuilds a structural
signature from a zipped signature:

unzip
〈
A : D ·X · D′

〉
S ≜ sigA D, module X : S, D

′
end

unzip ⟨γ1 ; γ2⟩ S ≜ unzip ⟨γ1⟩ (unzip ⟨γ2⟩ S)
unzip ⟨∅⟩ S ≜ S

Conversely, given a structural signature S, S ·X is the zipper positioned at the submodule X:(
sigA D, module X : S, D

′
end

)
·X ≜

〈
A : D ·X · D′

〉
S S · (X.X) ≜ (S ·X) ·X S · ∅ ≜ S

We may also define the path of a zipper as the sequence of projections that returns the zipped
signature from its unzipped one:

path (A : D ·X · D′) = X path (γ ; γ′) = (path γ) · (path γ′)

Then, we have (unzip (⟨γ⟩ S)) · (path γ) equal to ⟨γ⟩ S.
A partial zipper A : D is a full zipper A : D · X · D′ where we have dropped both the

projection-field name X and the after-fields D′, because we do not need them. The idea is to
directly hold the signature S that was at a field X in some structural signature and still have
access to the fields precedingX. We do not care about the field nameX nor the fields following
X, on which S does not depend. Partial zippers are smaller, slightly easier to manipulate,
and sufficient to define most typing judgments. We may also view a partial zipper A : D as
the full zipper D · Z · ∅, using a reserved field Z, and extend unzipping to partial zippers.

4.3.3 Strengthening and typing environment

Strengthening is a key operation in path-based module systems: intuitively, it is used to give
module signatures and abstract types an identity that will then be preserved by aliasing.

In ZipML, we may use transparent ascription (= P < S) to express strengthening of the
signature S by the path P , which effectively gives an identity, i.e., path P , to an existing
signature S—under a subtyping condition between the signature of P and S. In other words,
transparent ascription allows strengthening to be directly represented in the syntax of signa-
tures. This can be advantageously used to implement strengthening lazily, by contrast with
OCaml’s eager version.6

Given a signature S and a path P , we consider two flavors of strengthening: delayed
strengthening S//P and shallow strengthening S/P , defined on Figure 26. Shallow strength-
ening is only defined on signatures in head normal forms and is called during normalization to
push strengthening just one level down. It then delegates the work to delayed strengthening
S//P , which will insert a transparent ascription in a signature, if there is not one already, and
push it under zippers if any. Since the very purpose of strengthening is to make signatures
transparent, both form of strengthening indeed return a transparent signature S. The rules
for delayed signature strengthening should be read in order of appearance, as they pattern
match on the head of the signature:

• Delayed strengthening stops at a transparent ascription, since it is already transparent.
6There is actually a proposal to add lazy strengthening in OCaml for efficiency purposes. XDR [ Should

we give a URL? ]
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Delayed strengthening
(= P ′ < S) // P ≜ (= P ′ < S)〈

γ ; γ′
〉
S // P ≜

(
⟨γ⟩

( 〈
γ′
〉
S
))
// P〈

A : D
〉
S // P ≜

〈
A : D // P

〉 (
S[A 7→ P.A] // P

)
S // P ≜ (= P < S)

Shallow strengthening
sigA D end / P ≜ sigA D[A 7→ P ] // P end

(Y : Sa) → S / P ≜ (Y : Sa) → (S // P (Y ))

() → S / P ≜ () → S

Declaration strengthening
(valx : u) // P ≜ valx : u (moduleX : S) // P ≜ moduleX : (S // P.X)

(type t = u) // P ≜ type t = u (module type T = S) // P ≜ module type T = S

Context strengthening
Γ ⊎ (Y : S) ≜ Γ, Y : (S // Y ) Γ ⊎ (moduleA.X : S) ≜ Γ, moduleA.X : (S // A.X)

Γ ⊎ (A : D ; γ) ≜ (Γ ⊎ A : (D // A)), γ

Figure 26: Strengthening (delayed by default) – S / P and S // P

• It strengthens zipped signatures step by step. For a compound zipper, we decompose it
as two successive zipping. For a simple zipper, we strengthen both the zipper and the
signature in which we replaced the self-reference A by the strengthened path. We ignored
the empty zipper, which is neutral for zipping. Notice that strengthening commutes with
unzipping. That is, unzip (⟨γ⟩ S // P ) is equal to (unzip ⟨γ⟩ S) // P .

• Otherwise, delayed strengthening just inserts a transparent ascription, which is actually
the materialization of the delaying.

We also defined delayed strengthening on declarations, which is called by strengthening on
zippers, shallow strengthening, and context strengthening: it pushes delayed strengthening
inside module declarations and does nothing on other fields. (Module type definitions never
have an identity, so they are not strengthened.)

Finally, Figure 26 defines a helper binary operation ⊎ that strengthens bindings as they
enter the context. We use it to maintain the invariant that all signatures entering the typing
environment are transparent signatures S, which can be duplicated without lost of sharing.

Strengthening strengthen identities but not types. This is a key.
For example, if Γ ⊢ sigA type t = A.t end, then Γ⊎ΓA.XsigA type t = A.t end is equal

to

4.3.4 Path typing

Since paths include projections and applications, which require some type checking, their
types are not immediate to deduce. Moreover, module types may themselves be definitions
that must sometimes be inlined to be analyzed.

The path typing judgment Γ ⊢ P : S is defined on Figure 27. A key invariant is that the
signature S is transparent.

Rules Typ-P-Arg and Typ-P-Module are straightforward lookup. Rule Typ-P-Zip ac-
cesses a zipper through its self-reference. It may be surprising that the signature sigA D end

of P.A need not be put back inside the zipper G. The key here is that the signature ⟨G⟩S, and
hence the declaration D, are transparent and no longer depend on the local zipper context G,
but only on the environment Γ.

Rule Typ-P-Norm means that path typing is defined up to signature normalization (see
below): we may, but need not, normalize the signature to progress, e.g., when the signature
S is a module type.
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Typ-P-Arg
Y : S ∈ Γ

Γ ⊢ Y : S

Typ-P-Module
moduleA.X : S ∈ Γ

Γ ⊢ A.X : S

Typ-P-Zip
Γ ⊢ P : ⟨G⟩S G(A) = D

Γ ⊢ P.A : sig D end

Typ-P-Norm
Γ ⊢ P : S Γ ⊢ S ↓ S′

Γ ⊢ P : S′

Typ-P-Proj
Γ ⊢ P ▷ sig D end moduleX : S ∈ D

Γ ⊢ P.X : S

Typ-P-AppA
Γ ⊢ P ▷ (Y : Sa) → S Γ ⊢ P ′ : S′ Γ ⊢ S′ ≤ Sa

Γ ⊢ P (P ′) : S[Y 7→ P ′]

Figure 27: Path typing – Γ ⊢ P : S

Res-P-Id
Γ ⊢ P : ⟨G⟩ (= P ′ < S̃)

Γ ⊢ P ▷ P ′

Res-P-Val
Γ ⊢ P : ⟨G⟩ (= P ′ < S̃) S̃ = S̃ / P ′

Γ ⊢ P ▷ S̃

Figure 28: Path Resolution – Γ ⊢ P ▷ P ′ and Γ ⊢ P ▷ S̃

The two remaining rules use path resolution to analyze the signature. In Rule Typ-P-Proj,
we ignored the self-reference to the signature of P since we know it is transparent, hence S
does not use its self-reference and is well-formed in Γ. Typing of functors (Rule Typ-P-AppA)
requires the domain signature to be a super type of the argument signature. We then return
the codomain signature after substitution of the argument P by the parameter Y .

Notice that path typing is not deterministic: there may be two signatures S1 and S2 such
that Γ ⊢ P : S1 and Γ ⊢ P : S2, where S1 and S2 are not α-equivalent. First, one may contain a
zipper that the other will have dropped. Then, one may or may not call normalization. Finally,
normalization may be partial, inlining some module type definitions, but not necessarily all
of them.

Path resolution A signature contains dual information, a structure and an identity. Path
resolution is composed of two independent single-rule helper judgments, defined on Figure 28,
that extract this information. Path resolution accesses information inside the signature, so we
must skip the zippers that surrounds it if any. In both rules, G is meant for that, assuming
that zippers have been flattened and defaulting to the empty zipper. The judgment Γ ⊢ P ▷ P ′

(Res-P-Id) just returns the path P ′ of the transparent signature of P . The judgment Γ ⊢ P ▷ S̃
returns the unzipped (hence the tilde) part of the signature of P , but strengthened with its
identity P ′. The judgment does not require S̃ to be in head normal form, but may reach a
normal form when asked to do so. We thus might use resolution to pattern match on the
resulting signature, forcing computation of a head normal form.

4.3.5 Normalization

The judgment Γ ⊢ S ↓ S′ allows the (head) normalization of a signature S into S′, which inlines
module type definitions, but only one step at a time. Hence, to achieve the head normal form,
we may call normalization repeatedly. Rule Norm-S-Zip normalizes the signature part of a
zipped signature. We never normalize the zipper itself, as we will first access the zipper and
normalize it afterwards.XDR [ Perhaps, we should, which would allow simplification
on the zipper side. ] Rules Norm-S-Trans-Some and Norm-S-Trans-None allows
normalization under a transparent ascription. If the (partial) normal form of S is itself a
transparent ascription, we return it as is; otherwise, we return its strengthened version by the
resolved path P ′. Finally, rules Norm-S-LocalModType and Norm-S-PathModType expand
a module type definition.
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Norm-S-Zip
Γ ⊎ γ ⊢ S ↓ S′

Γ ⊢ ⟨γ⟩ S ↓ ⟨γ⟩ S′

Norm-S-Trans-Some
Γ ⊢ S ↓ (= P ′ < S)

Γ ⊢ (= P < S) ↓ (= P ′ < S′)

Norm-S-Trans-None
Γ ⊢ P ▷ P ′ Γ ⊢ S ↓ S′

Γ ⊢ (= P < S) ↓ (= P ′ < S′)

Norm-Typ-Res
Γ ⊢ P ▷ P ′

Γ ⊢ P.t ↓ P ′.t

Norm-S-LocalModType
module type A.T = S ∈ Γ

Γ ⊢ A.T ↓ S

Norm-S-PathModType
Γ ⊢ P ▷ sig D end

module type T = S ∈ D

Γ ⊢ P.T ↓ S

Norm-Typ-Local
typeA.t = u ∈ Γ

Γ ⊢ A.t ↓ u

Norm-Typ-Path
Γ ⊢ P ▷ sig D end

type t = u ∈ D

Γ ⊢ P.t ↓ u

Figure 29: Signature and type normalization – Γ ⊢ S ↓ S′

Sub-S-Norm
Γ ⊢ S1 ↓ S′1 Γ ⊢ S2 ↓ S′2 Γ ⊢ S′1 ⩽ S′2

Γ ⊢ S1 ⩽ S2

Sub-S-Zipper
Γ ⊎ γ ⊢ S1 ⩽ S2

Γ ⊢ ⟨γ⟩ S1 ⩽ S2

Sub-S-TrAscr
Γ ⊢ S1 / P ⩽ S2 / P

Γ ⊢ (= P < S1) ⩽ (= P < S2)

Sub-S-LooseAlias
Γ ⊢ S1 / P ⩽ S2

Γ ⊢ (= P < S1) ⩽ S2

Sub-S-FctG
Γ ⊢ S1 ⩽ S2

Γ ⊢ () → S1 ⩽ () → S2

Sub-S-FctG
Γ ⊢ Sa2 ⩽ Sa1 Γ ⊎ Y : Sa2 ⊢ S1 ⩽ S2

Γ ⊢ (Y : Sa1
) → S1 ⩽ (Y : Sa2

) → S2

Sub-S-Sig
D0 ⊏≤ D1 Γ ⊎A : D1 ⊢ D0 ⩽ D2

Γ ⊢ sigA D1 end ⩽ sigA D2 end

Sub-S-DynEq
Γ ⊢ S ≲ S′ Γ ⊢ S′ ≲ S

Γ ⊢ S ≈ S′

Sub-T-Norm
Γ ⊢ u1 ↓ u Γ ⊢ u2 ↓ u

Γ ⊢ u1 ⩽ u2

Sub-D-Mod
Γ ⊢ S1 ⩽ S2

Γ ⊢ moduleX : S1 ⩽ moduleX : S2

Sub-D-Val
Γ ⊢ u1 ⩽ u2

Γ ⊢ valx : u1 ⩽ valx : u2

Sub-D-Modtype
Γ ⊢ S1 ≈ S2

Γ ⊢ module type T = S1 ⩽ module type T = S2

Sub-D-Type
Γ ⊢ u1 ≈ u2

Γ ⊢ type t = u1 ⩽ type t = u2

Figure 30: Subtyping – Γ ⊢ S ⩽ S̃

The judgment Γ ⊢ P.t ↓ u allows normalization of types. Rules Norm-Typ-Res allows the
resolution of the path P while rules Norm-Typ-Local and Norm-Typ-Path inlined the type
definition Q.t.

4.3.6 Subtyping judgments

The subtyping judgment Γ ⊢ S ⩽ S̃ is only defined when the target signature is an elaborated
signature S̃ and therefore is well-formed, does not contain zippers nor zipper accesses (nor
chains of transparent ascriptions). The left-hand side signature S is also a well-formed signa-
ture resulting either from the elaboration of a source signature or from typechecking. Hence,
it may contain zippers. The same invariants extend to auxiliary subtyping judgments for
declarations and paths.

Signature subtyping is defined on Figure 30. This is actually a parametric definition that
depends on the ⊏ binary operation between declarations, used to parameterized the width
subtyping Rule Sub-S-Sig. This allows us to decide whether and how fields can be rearranged
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during subtyping. For simplicity, we wrote ⩽ instead of ⩽⊏ in the definition of the typing
rules.

Rules must be read by case analysis on the left-hand side signature. Rule Sub-S-Norm
is not syntax directed and can be applied anywhere and repeatedly to perform normalization
before subtyping. For example, there is no rule matching a signature Q.T on the left-hand
side. But normalization allows inlining the definition before checking for subtyping. A zipper
may only occur on the left-hand side. Rule Sub-S-Zipper pushes the zipper in the environment
(as the signature S1 may not be transparent) and pursues with subtyping. For other cases, we
require the left-hand side to be in head normal form. When the left-hand side is a transparent
ascription the right-hand side may also be a transparent ascription, in which case, we check
subtyping between the respective signatures, but after pushing strengthening one level-down,
lazily (Sub-S-TrAscr). Otherwise, we drop the transparent ascription only the left-hand side,
which amounts to loose its transparency, hence increase abstraction, as allowed by subtyping
(Sub-S-LooseAlias). In the remaining cases, the left-hand side is a head value form and the
right-hand side must have the same shape. Functor types are contravariant. For subtyping
explicit signatures (Sub-S-Sig), we may sometimes forget and reorder some fields, as specified
by the parameter relation ⊏⩽. Namely, we must find a sequence D0 related to D1 by ⊏⩽, and
subtyped pointwise with D2, but in an environment extended with A.D1.

The main subtyping relation is ⩽ defined as ⩽⊆, i.e., using ⊆ for ⊏⩽. Namely, D0 can
be any subset of D1 where fields may appear in a different order. This relation is (usually)
not code-free. Indeed, to ensure fast accesses, the representation of a structure (usually)
follows the structure of its signature. That is, its runtime fields (modules and values) should
be exactly the same and appear in the same order as in its signature. Thus, reordering
a signature requires reordering the structure’s representation accordingly. We also define a
code-free version of subtyping, ≲, where the relation ⊏≲ is defined as D0 ⊏≲ D1 ≜ D0 ⊆
D1 ∧ dyn(D0) = dyn(D1) and dyn(D) returns the subsequence of D composed of dynamic fields
(modules and values) only (appearing in the same order). The subtyping relation ≲ is used
in Rule Sub-S-DynEq to defined ≈ on signatures as the kernel of ≲.

Subtyping uses two other helper judgments, for type and declaration subtyping. There is
a single rule Sub-T-Norm for type subtyping that injects head type normalization into the
subtyping relation, which is the pending of Rule Sub-S-Norm. In fact, this rule should also
be made available in the subtyping relation of the core language, which should be a congruent
preorder. For module declarations (Rule Sub-D-Mod), we just require subtyping covariantly.
Rule Sub-D-Val for core language values is similar, requiring subtyping in the core language.
In OCaml, this would reduce to core-language type-scheme specialization, which we haven’t
formalized.

Since module types may be used in both covariant and contravariant positions, the rule
Sub-D-Modtype requests subtyping in both directions. Moreover, since this subtyping could
occur deeply inside terms, we use code-free type equivalence. Notice that if signatures were
fully inlined, subtyping would never see the names of definitions but their original inlined
expansion and covariance would suffice. XDR [ Concrete example is needed ] The
same remark applies to core-language type fields, which are also used as definitions and may
appear both co- and contravariantly. Hence, Rule Sub-D-Type requires Γ ⊢ u1 ≈ u2 which
means code-free subtyping in both directions, i.e., Γ ⊢ u1 ⩽ u2 and Γ ⊢ u2 ⩽ u1.

4.3.7 Signature typing

Source signatures provided by users are not necessarily well formed, and thus must be typed,
using the judgment Γ ⊢ S̃, defined on Figure 31. The resulting source signature S̃ is zipper
free. Since this is also enforced by not having a typing rule for zipped signatures, we have
not enforced the syntactic subcategories and just use S and D for signatures and declarations,



120 CHAPTER 4. ZIPML

Typ-S-ModType
Γ ⊢ Q̃.T : S

Γ ⊢ Q̃.T

Typ-S-GenFct
Γ ⊢ S

Γ ⊢ () → S

Typ-S-AppFct
Γ ⊢ Sa Γ ⊎ (Y : Sa) ⊢ S

Γ ⊢ (Y : Sa) → S

Typ-S-Ascr
Γ ⊢ S Γ ⊢ P̃ : S Γ ⊢ S ⩽ S

Γ ⊢ (= P̃ < S)

Typ-S-Str
Γ ⊢A D A /∈ Γ

Γ ⊢ sigA D end

Typ-D-Val
Γ ⊢ ũ

Γ ⊢A (valx : ũ)

Typ-D-Type
Γ ⊢ ũ

Γ ⊢A (type t = ũ)

Typ-D-TypeAbs
Γ ⊢A (type t = A.t)

Typ-D-Mod
Γ ⊢ S

Γ ⊢A (moduleX : S)

Typ-D-ModType
Γ ⊢ S

Γ ⊢A (module type T = S)

Typ-D-Empty
Γ ⊢A ∅

Typ-D-Seq
Γ ⊢A D0 Γ ⊎A.D′0 ⊢A D

Γ ⊢A (D0, D)

Figure 31: Signature typing (all signatures are S̃) – Γ ⊢ S̃

for the sake of readability. The signature S̃ should not have zipper accesses either, which is
enforced by using the restricted syntactic categories Q̃ and P̃ for paths.

Rule Typ-S-ModType uses path typing to check the well-formedness of paths. Rule Typ-
S-Ascr must also check that the signature of path P̃ is a subtype of the signature S. Rule
Typ-S-Str for structural signatures delays most of the work to the elaboration judgment
Γ ⊢A D for declarations, which carries the self-reference variable A which should be chosen fresh
for Γ, as it now appears free in declarations D. Rule Typ-D-Seq for sequence of declarations
pushes A.D0 in the context while typing the remaining sequence D. All the other rules are
straightforward.

In practice, typing of signatures could simplify them on the fly, typically removing chains
of transparent ascriptions if any. This would then require to replace the typing judgment
Γ ⊢ S by an elaboration judgment Γ ⊢ S : S′ that returns an elaborated signature S′. In fact,
this would be necessary if we allowed declarations open S and include S that should always
be elaborated. We have not included them, but the type system has been designed to allow
them.

4.3.8 Module typing

The typing judgment Γ ⊢
♢
M : S for module expressions is given on Figure 32. The ♢ symbol

is a metavariable for modes that ranges over the applicative (or transparent) mode ▽ and
the generative (or opaque) mode ▼. Rule Typ-M-Mode means that we may always consider
an applicative judgment as a generative one. This is a floating rule that can be applied at
any time. Judgments for pure module expressions can be treated either as applicative or
generative, hence they use the ♢ metavariable. Many rules use the same metavariable ♢
in premises and conclusion, which then stand for the same mode. This implies that if the
premise can only be proved in generative mode, it will also be the case for the conclusion.

Typing a path P̃ (which should not contain zipper accesses) as a module expression (Rule
Typ-M-Path) calls the path typing rule defined earlier (with no mode symbol), which always
returns a transparent signature (= P ′ < S). However, we return the “more recent” identity
(= P̃ < S), as this is probably the one the user would like to see; besides, the older identities
can always be recovered by path resolution, while the reverse is not be possible.

A signature ascription (P̃ : S̃) gives the source path P̃ the (elaborated) signature of the
source signature S̃ after checking that is it indeed a supertype of the signature of P̃ alone
(Rule Typ-M-Path). This ascription is opaque since it returns the elaboration S̃′ of S̃ which
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Typ-M-Norm

Γ ⊢
♢
M : S Γ ⊢ S ↓ S′

Γ ⊢
♢
M : S′

Typ-M-Mode

Γ ⊢
▽
M : S

Γ ⊢
▼
M : S

Typ-M-Ascr
Γ ⊢ S̃ Γ ⊢ P̃ : S′′ Γ ⊢ S′′ ⩽ S̃

Γ ⊢
♢
(P̃ : S̃) : S̃

Typ-M-Path
Γ ⊢ P̃ : (= P ′ < S)

Γ ⊢
♢
P̃ : (= P̃ < S)

Typ-M-FctG

Γ ⊢
▼
M : S

Γ ⊢
♢
() → M : () → S

Typ-M-AppG
Γ ⊢ P ▷ () → S

Γ ⊢
▼
P () : S

Typ-M-FctA

Γ ⊢ Sa Γ ⊎ Y : Sa ⊢
▽
M : S

Γ ⊢
♢
(Y : Sa) → M : (Y : S′a) → S

Typ-M-Str
Γ ⊢A B : D A /∈ Γ

Γ ⊢ structA B end : sigA D end

Typ-M-Proj

Γ ⊢
♢
M : ⟨γ⟩ S Γ ⊎ γ ⊢ S ▷ sigA D; module X : S′; D

′
end

Γ ⊢
♢
M.X :

〈
γ ;A : D

〉
S′

Typ-B-Seq
Γ ⊢A♢ B0 : D0 Γ ⊎A.D0 ⊢A♢ B : D

Γ ⊢A♢ A, B0, B : D0, D

Typ-B-Typ-Bind
Γ ⊢ ũ : u′

Γ ⊢A♢ (type t = ũ) : (type t = ũ)

Typ-B-Empty
Γ ⊢A♢ ∅ :∅

Typ-B-AbsType
Γ ⊢A♢ (type t = A.t) : (type t = A.t)

Typ-B-Let

Γ ⊢
♢
e : u

Γ ⊢A♢ (letx = e) : (valx : u)

Typ-B-Mod

Γ ⊢
♢
M : S

Γ ⊢A♢ (moduleX = M) : (moduleX : S)

Typ-B-ModType
Γ ⊢ S̃ : S′

Γ ⊢A♢ (module type T = S̃) : (module type T = S′)

Figure 32: Typing rules
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is not strengthened by P̃ . However, we can also use this construct to implement transparent
ascription (P̃ < S̃) as syntactic sugar for (P : (= P̃ < S̃)), which then returns the view S but
with the identity of P .

A generative functor Typ-M-FctG is just an evaluation barrier: the functor itself is ap-
plicative while the body is generative. Correspondingly, applying a generative functor, which
amounts to evaluating its body is then generative. An applicative functor is typed in the
obvious way.

Rule Typ-M-Str for structures delays the work to the typing rules for bindings, which
carry the self-variable A of the structure as an annotation that should be chosen fresh for
the context Γ. The remaining rules are for typing of bindings, which work as expected. In
particular, Rule Typ-B-Seq pushes the declaration A.D0 into the context while typing the D,
much as Typ-D-Seq for signatures.

Finally, Rule Typ-M-Proj for typing a projection M.X is the key rule that leverages zippers.
Thanks to the use floating components, we can easily deal with the general case when M is not
a path, without running into signature avoidance. Intuitively, it just returns the signature S′

of the field X of the signature S of M zipped in the prefix of S before the field X. Still, we have
to consider that the signature of M may itself be in a zipper γ, which is then composed with
the prefix zipper, resulting in γ ;A : D. Notice also that we must push γ in the context while
resolving the type of S since S may not be transparent. Finally, note that since subtyping is
not code free, it is not a floating rule and is only allowed at specific places, namely signature
ascriptions and functor applications.

4.4 Signature avoidance by zipper simplification

In the type system of the previous section, the only rule that introduces floating components
is the projection rule Typ-M-Proj. From there, zippers are transported by the other typing
rules. They may be eliminated only by subtyping at a signature ascription or an application.
Yet, zippers are a typechecking tool to delay signature avoidance, but should not actually be
present at runtime. Indeed, the typing rules prevent direct access to zippers, and internal
zippers accesses are only done by type declarations, which are not present at runtime. In this
section, extend subtyping to allow zipper subtyping. The simultaneously extends dynamic
equivalence to allow simplification of floating fields and their removal when they become
unreachable, but without loosing any (visible) type equalities. Dynamic equivalence is too
expressive and would allow zipper transformations that would be difficult to compute and not
very intuitive for the user. We give an effective simplification algorithm that works along a
simpler version of dynamic equivalence.

4.4.1 Subtyping with zippers

We first extend ZipML to allow full zippers instead of partial zippers. This extension is
done by direct replacement in the previous definitions. XDR [ Should we change the
projection rule? We do not need to as we may reify partial zippers as full zippers
]

Code-free equivalence ≈, defined in Rule Sub-S-DynEq, Section 4.3.6, could be used as a
floating rule since it doesn’t change static information nor dynamic representation. However,
the underlying code-free subtyping ≲ has only been defined on zipper-free signatures S̃. We
now extend the definition of subtyping to allow full zippers on both sides. We just add the
following subtyping rule for zippers (keeping all the previous rules, including Rule Sub-S-
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Zipper):

Sub-S-Zip
Γ′ = Γ ⊎A : D1; moduleX : S1; D1

′

D0 · D0
′
⊏⩽ D1 · D1

′
Γ′ ⊢ D0 ⩽ D2 Γ′ ⊢ S1 ⩽ S2 Γ′ ⊢ D0

′
⩽ D2

′

Γ ⊢
〈
A : D1 ·X · D1

′
〉
S1 ⩽

〈
A : D2 ·X · D2

′
〉
S2

XGR [ Check explanation below ] The rule has been designed so that it commutes with
zipping, i.e., Γ ⊢ ⟨γ⟩ S ⩽ ⟨γ′⟩ S′ holds if and only ifXGR [ Check that ] Γ ⊢ unzip ⟨γ⟩ S ⩽ unzip ⟨γ′⟩ S′.
It allows dropping fields, moving fields between sides of the zipper, and subtyping between
fields, as long at it preserves well-formedness. Dropping is enabled by the intermediary decla-
rations D0; D0

′ and the ⊏⩽ relation. By instantiating this rule with ⊏≲, the relation ≈ applies
to all signatures, even with (partial or full) zippers. Since it is defined as an equivalence,
no type information (no sharing) has been lost. The interest of moving fields on the right is
to prepare for them to be removed—provided the resulting signature is well-formed, that is,
provided the to-be-removed fields are never accessed. This may be formalized by introducing
a new code-free subtyping relation ⪯ called zipper-subtyping where ⊏⪯ is defined as:7

D0 · D0
′
⊏⪯ D1 · D1

′
≜ D0 = D1 ∧ D0

′ ⊆ D1
′

D0 ⊏⪯ D1 ≜ D0 = D1

This allows to drop any subset of fields on the right-hand side of zippers but keep them in
order both on the left-hand side of zippers and on signature declarations. This still requires
both signatures to be well-formed.

We define a new relation called simplification as the relation (⪯ ;≈) that composes code-
free equivalence with zipper-subtyping. This relation is still code-free and commutes with
subtyping, that is, (≾ ;≤) ⊆ (≤ ;≾). This indirectly implies that typechecking will never fail
because of ≾-simplifications. XDR [ I am confident that the commutation is correct
when the target is in zipper-free signatures, not sure of the more general case ]

Since ≾ is a code-free subtyping relation, we may extend the typing judgment with the
following floating (i.e., non syntactic) typing rule:

Typ-M-Simplify
Γ ⊢ M : S Γ ⊢ S ≾ S′

Γ ⊢ M : S′

This allows to replace a zipper by an equivalent one with fewer fields as long as we are not
loosing any sharing. This can be done anytime, during or after typechecking.

4.4.2 Simplification algorithm

In this section, we propose a simplification algorithm that transforms a signature along ≾,
which we can use to reduce the size of the zipper. When we can remove the zipper altogether,
this will coincides with solving signature avoidance. When some floating fields remain, this is
just delaying signature avoidance.

We first present a simple algorithm that only deals with a single zipper composed of a
single abstract type definition. We then extend it several times to deal with more complex
zippers: first to treat a single submodule, then a single functor. Finally, we extend it to
zippers with any number of components.

This algorithm serves a purpose similar to the anchoring of Blaudeau et al. [2024], and we
reuse their terminology (anchoring point). However, while their algorithm worked on already-
extruded existential types, we present here an algorithm that works directly on the source
signatures with zippers, which are technically quite different.

7Formally, we should now see ⊏⪯ as an overloaded relation defined both between pairs of sequences, to be
used in Rule Sub-S-Zip, and between sequences, to be used in Rule Sub-S-Sig.
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Preliminary simplifications We may use normalization eagerly to always inline floating
module type definitions, floating type definitions, and module type definitions that refer to
floating fields. Those could needlessly prevent anchoring. (Other definitions need not—and
therefore should not—be inlined as these will not help with further simplifications.)

Anchoring a single type

Anchoring points As a simple starting point, let us consider the avoidance of a single type
field. It corresponds to the transformation of ⟨A : type t = A.t⟩ S reified as ⟨A : type t = A.t · Z · ∅⟩ S
into ⟨A : ∅ · Z· type t = Z.P.t′⟩ S′, where some field of S serves as a new anchoring point to
avoid A.t: all occurrences of A.t are rewritten into Z.P.t′ in S′. An anchoring point for A.t
must therefore validate two conditions: (1) it should be of the form type t′ = A.t and (2) it
should be accessible from the root of the signature Z. By contrast, all other occurrences of A.t
are usage points. If a usage point occurs before the first anchoring point, then the floating
field cannot be moved.

Computing the anchoring points and usage points of A.t can be easily done with a mutable
map φ. For now, the map φ(A.t) will be either Empty, indicating that no occurrences of A.t
have been seen yet, or one of the following final states:

• Used if the type has been used in a non anchoring definition;

• AnchorableP0.t0: if an anchoring point type t0 = A.t has been found at position Z.P0.t0
in S.

We then define a visitP S′ function that recursively goes through the signature S while updating
the map. The optional path P indicates the path to the root Z if still accessible, or none.
When visiting without a path, all type declarations are considered usage points, they cannot
be anchoring points. The path is reset to none when entering:

• a generative functor or a module type, as no path goes inside;

• an applicative functor, as it would erroneously make the type dependent;8

• a submodule with a transparent signature, as paths reaching inside the submodule are
normalized away;

• a submodule with a module type signature.

The initial call is visitZ S. At the end of the visit, the map φ(A.t) can be:

• Empty, meaning that the type A.t has not been used;

• Used, in which case no simplification can be made; or

• AnchorableZ.P.t′.

In the latter case, we need to substitute, intuitively, A.t by Z.P.t′.

Contextual path substitution However, due to the structure of submodules in the sig-
nature S, we need to revisit the signature to replace all occurrences of A.t found at a path
Z.P ′ not by path Z.P.t′ itself, but by stripped off its common prefix with Z.P ′ and rewired
at the enclosing self-reference: For instance, with AnchorableZ.X1.X2.t

′, occurrences of A.t
should be replaced by

8For instance, we cannot anchor type A.t inside the body of a functor F as different applications of F
would produce different abstract types.
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• A2.t
′ inside X2, where A2 is the self-reference of the signature of X2;

• A1.X2.t
′ inside X1, where A1 is the self reference of the signature of X1;

• A.X1.X2 in the rest of the signature S.

Note that rewiring at the closest self-reference is mandatory to ensure well-formedness of the
resulting signature. For the rest of this section, we refer to this technique as contextual path
substitution.

Submodule constraint

We now extend the previous approach to a zipper that contains a single submodule with any
number of type declarations or submodules. As an example, let us consider:

⟨A : module X : sigB (type t1 = B.t1 type t2 = B.t2) end⟩ sigC (type t3 = A.X.t1 val x : A.X.t2) end

We just extend the previous algorithm using a multi-point map φ. At the end of the visiting
phase, it would give here:

A.X.t1 7→ AnchorableZ.t3 ; A.X.t2 7→ Used

However, by contrast with the single-point map, we cannot always move the anchorable fields.
Indeed, the whole submodule X cannot be moved to the right of S, if one of its field X.t2 is
used but not anchorable (hence in the final state Used). We therefore introduce the submodule
constraint : fields inside a submodule are anchorable only if no field of the submodule is in
Used final state. This can easily be computed on the map after the visit by looking at prefixes.

Module identities

We further extend the algorithm to treat transparent signatures and identity sharing between
modules. The overall principle remains the same as for abstract types. The anchoring points
for a submodule moduleX : S are accessible module declarations of the form moduleX ′ : (=
X < S′) with the additional constraint that S′ is a subtype of S. Other occurrences of A.X
(not as a prefix) are usage points, as in F (A.X).t for instance. We extend the anchoring map
φ to support both types and paths. A submodule A.X can eventually be moved only φ(A.X)
final state is Empty or AnchorableP.X ′.

After visiting the signature, while respecting the submodule constraint, we do the contex-
tual path substitution. When substituting at the anchoring point, we must get a module dec-
laration moduleX ′ : (= X ′ < S′) that is equal to itself, which we rewrite in moduleX ′ : S′/X ′;
then we continue with the substitution inside S. If X appears as a prefix or inside a functor
application, it is also substituted.

Let us consider a small example:

⟨A : module X : (sigB type t1 = B.t1 type t2 = B.t2 end)⟩
sigC type t3 = A.X.t1 module X ′ : (= A.X < (sigB type t1 = B.t1 type t2 = B.t2 end)) end

After the visit of the signature, we get the following map:

A.X.t1 7→ AnchorableZ.t3 ; A.X 7→ AnchorableZ.X ′ ; A.X.t2 7→ AnchorableZ.X ′.t2 ;

After the substitution, we wouldXDR [ this is not exactly what we get, right? ] get
the signature:

sigC type t3 = C.t3 module X ′ : (= C.X ′ < (sigB type t1 = C.t3 type t2 = C.X.t2 end)) end

Actually, reinstalling self-references during the substitution, we finally get:

sigC type t3 = C.t3 module X ′ : (sigB type t1 = C.t3 type t2 = B.t2 end) end
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Functor applications

Supporting functor application does not require modifying the map. As done in Blaudeau
et al. [2024], we rely on a simple decidable criterion for functors, which is the same as for
submodules: functors can be moved only if it has been used and anchored. Whereas we
allowed to anchor individual types of submodules, we do not try to anchor individual types
out of applicative functors, as they would suggest a computation that did not happen. That
is why the visitP continues with an empty path inside applicative functors, which prevent
anchorability.

Hence. the only update to the algorithm is to let contextual path substitution go inside
functor applications and rewrite them if necessary.

Generalization

Finally, we extend the algorithm to support multiple zippers with multiple fields. A naive
generalization would treat every zipper declaration independently, from the innermost to the
outermost. This would however be quadratic in the size of the signature, requiring a whole
visit of the signature for every zipper field. We can improve on this solution and compute
everything in a single pass by considering a third type of point (besides anchoring and usage):
dependency. A dependency point is a usage point of a zipper field inside the rest of the zipper,
not inside the signature. A dependency point becomes a true usage point if the corresponding
field turns out to not be anchorable inside the signature.

For instance, consider the following signature:

⟨A : type t = A.t module F : (Y : sig type u = A.t end) → . . .⟩ S

The occurrence of A.t inside the signature of F is a dependency point: if F can be moved
after the signature, then the dependency disappears. If not, it becomes a true usage point
and prevents A.t from being anchored.

To support dependency points, we extend the anchorable state to Anchorable (L)P where
L is a list of paths to dependency points, all rooted inside zippers. We then just take the
list of dependencies into account after the visit when computing the anchorable fields before
applying the contextual substitution.

4.4.3 Restructuring zippers

In fact, while ≾ is sufficient to remove useless zippers, it don’t allow changing the structure of
zippers. We could actually inverse generalization and allow zippers to be introduced. We may
do this by defining the equivalence ≾≿ as (≿ ;≾) and inject this as an additional typing rule
Typ-M-Generalize or, equivalently, replace Typ-M-Simplify by Typ-M-Equiv. This allows
to completely reorganize the structure of zippers, provided they bind the same essential fields.

Typ-M-Generalize
Γ ⊢ M : S Γ ⊢ S ≿ S′

Γ ⊢ M : S′

Typ-M-Equiv
Γ ⊢ M : S Γ ⊢ S ≾≿ S′

Γ ⊢ M : S′

4.5 Properties

4.5.1 Soundness of ZipML by Elaboration in Mω

We now present the elaboration from ZipML to Mω Blaudeau et al. [2024]. We expect the
reader to be familiar with elaboration of ML modules into Fω, ideally Mω Blaudeau et al.
[2024] or F-ing (Rossberg et al. [2014]) Rossberg et al. [2014]. This elaboration serves as a
proof of soundness of the system. Elaborating in Mω rather than directly in Fω allows to
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benefit from the sound extrusion and skolemization of Mω. The goal is to show that every
module expression that typechecks in ZipML also typechecks in Mω (as they have the same
source language):

⊢
♢
M : S =⇒ ⊢ M : ∃♢α.C (For some α, C)

We write ⊢ for judgments in Mω, as opposed to ⊢ for judgments in ZipML. However, to prove
this result by induction on the typing derivations we need to extend it to a non-empty typing
environment and link the two output signatures. To that aim, we introduce an elaboration
of source signatures ∆ ⊢ S : S where ∆ and S are Mω typing environments and signatures.
We may then define JΓK by folding the elaboration of signatures over Γ and JΓ ⊢ SK for the
signature S such that JΓK ⊢ S : S . In standalone Mω, signatures are of the form λα.C, but
they are turned into (either transparent or opaque) existential signatures ∃♢α.C when used
as the signature of a module. We write (λα.C)♢ to turn λα.C into ∃♢α.C. Then, the desire
soundness statement is:

Γ ⊢
♢
M : S =⇒ JΓK ⊢ M : JΓ ⊢ SK♢ (Soundness statement)

In the rest of this section, we first explain two key points: the treatment of zippers and the
elaboration of abstract types in the environment. Then, we show how the auxiliary judgments
of ZipML relate in Mω. XDR [ I guess we will need to cut this ]

Treatment of zippers

The first difficulty in the soundness statement is that the language of inferred signatures
of ZipML is larger than the source signatures of Mω, with the introduction of zippers in
signatures and zipper accesses in paths. Intuitively, zippers are removed at runtime, and could
be removed in Mω. However, to establish a one-to-one correspondence on inferred signatures,
we need to keep zippers in both inferred signatures and the environment. Therefore, we
extend Mω signatures and environments with zippers. We add zippers to Mω signatures with
the following signature elaboration rule, along with appropriate path typing extension.

Typ-S-Zip
Γ ⊢A D : λα.D Γ, A : D ⊢ S : λβ.C

Γ ⊢
〈
A : D

〉
S : λα, β.

〈
A : D

〉
C

However, and this is a key point, those zippers are only used during the proof by induction
for typing the inferred signatures of ZipML. They should be seen as decorations on types and
contexts to build a typing derivation in Mω, after which zippers can be erased. If we were to
produce the erased typing derivation of Mω directly, it would be difficult to capture the right
induction invariants.

Elaboration of environments and strengthening

When elaborating environments JΓK of ZipML, another technical point arises from the repre-
sentation of abstract types as self-referring signatures in ZipML typing environments, since
Mω uses existential type variables instead. For instance, consider an environment extended
with a submodule: Γ; moduleA.X : S. All type declarations inside S are concrete, either re-
ferring to other modules or to A.X itself. To help establish the correspondence between the
two representations, we define the interpretation of environments by the property that the
signature refers to itself:

JΓK;α; moduleA.X : C ⊢ S : C
JΓ; moduleA.X : SK = JΓK;α; moduleA.X : C
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XGR [ This whole paragraph is not very understandable ] This is not an algorithmic
rule, as it requires to guess the signature C and the set of abstract types α to show that
some environment is indeed the result of the interpretation. In the statement, when we
write JΓK we implicitly mean that there exists Γ′ such that Γ′ = JΓK. However, during the
proof we can exhibit such a Γ′, as objects are added in the environment via the operator ⊎
defined in Section 4.3.3. From (Γ ⊎ moduleA.X : S), we can “catch” the signature S before
its strengthening and use it to find C. Then, the elaboration of S is Γ ⊢ S : λα.C. From there,
we identify the set of abstract types α and the signature C. This is justified by the fact that
elaboration of a strengthened signature S // P is the same as elaboration of the signature S

before strengthening is applied to some type variables:

Lemma 9 (Elaboration of strengthening). Given a path P and a signature S, such that
JΓK ⊢ P : C′ and JΓK ⊢ S : λα.C and JΓK ⊢ C′ < C[α 7→ τ ], we have JΓK ⊢ S // P : (λα.C) τ .

Elaboration of judgments

As normalization, resolution, path typing, and subtyping are mutually recursive, we state four
combined properties that are proven by mutual induction. Type and module type definitions
are kept as such and only inlined on demand in ZipML, while they are immediately inlined
in Mω. Therefore, ZipML normalization becomes the identity in Mω.

Lemma 10 (Elaboration of normalization). If S normalizes to S′ in ZipML (Γ ⊢ S ↓ S′), then
both signatures have the same elaboration in Mω. Namely, JΓK ⊢ S : λα.C implies JΓK ⊢ S′ : λα.C.

Technical detail The introduction of module identities is done by a separate source-to-
source transformation in Mω, which, as the authors suggest, could be merged with typing.
This is what we do. For the sake of readability, we use pairs to represent their (id,Val)
structures:

(τ, C) ≜ sig type id = τ ;module Val : C end

Path typing and resolution in ZipML can be understood as accessing either the full module,
the identity type, or the value of a module at path P in Mω:

Lemma 11 (Elaboration of path-typing and resolution). If Γ ⊢ P : S then we have both
JΓK ⊢ P : (τ, C) and JΓK ⊢ S : (τ, C). Moreover,

• If Γ ⊢ P ▷ S then P and S have the same signature in Mω: JΓK ⊢ P : (τ, C) and JΓK ⊢ S : (τ, C).

• If Γ ⊢ P ▷ P ′ then P and P ′ have the same identity in Mω: JΓK ⊢ P : (τ,_ ) and JΓK ⊢ P ′ : (τ,_ ).

Lemma 12 (Elaboration of subtyping). The elaboration preserves subtyping relationship: If
JΓK ⊢ S : λα.C and JΓK ⊢ S′ : λα′.C′ then Γ ⊢ S ⩽ S′ implies JΓK ⊢ λα.C < λα.C′.

XDR [ I would prefer to formulate it as announced ]

Theorem 13: Soundness

If Γ ⊢
♢
M : S then ∃S such that JΓK ⊢ S : S and JΓK ⊢ M : S♢.

Erasing of zippers In the soundness theorem above, the decorated environment is only
used for the elaboration of the inferred signature. The left-hand side part is just normal
typing in Mω: no zipper signature and no zipper access inside M. Therefore, we can erase the
decoration in the context and the resulting signature, as it was only useful for the proof, to
obtain a plain Mω typing derivation.
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4.5.2 Completeness of ZipML with respect to Mω

Conversely, one might wonder if the type system of ZipML is powerful enough to simulate Mω.
We conjecture that it is the case. In this section we present the key arguments supporting it.
The main mechanism present in Mω that differs from ZipML is the introduction and extrusion
of existentially quantified types out of submodules and applicative functors via skolemization.
However, we show that, using the generalized equivalence defined in Section 4.4.3, we can
simulate the extrusion mechanism with floating components. Contrarily to quantified vari-
ables, those components are not alpha-convertible, but we show that it does not matter as
they can be freely renamed at any point.

Simulating extrusion of abstract types with floating components

Floating fields can be used to encode extrusion of existential types. For instance, if we
consider a type component inside a submodule, we can introduce a full zipper with a new
type component on the right-hand side, and use equivalence to commute it. This would give:

sig module X : (sigA type t = A.t end) end

≾≿ ⟨B : ∅ · Z· type t0 = Z.X.t⟩ sig module X : (sigA type t = A.t end) end

≾≿ ⟨B : type t0 = B.t0 · Z · ∅⟩ sig module X : (sigA type t = B.t0 end) end

Similarly, floating fields can be used to encode extrusion of higher-order types, by introducing
unary functors that take an empty argument as input:

(Y : S) → sigA type t = A.t val x : A.t end
≾≿ ⟨B : ∅ · Z· module F0 : (Y : sig end) → sigA type t = Z(Y ).t end⟩

(Y : S) → sigA type t = A.t val x : A.t end
≾≿ ⟨B : module F0 : (Y : sig end) → sigA type t = A.t end · Z · ∅⟩

(Y : S) → sigA type t = B.F0(Y ).t val x : A.t end

This shows that floating fields have at least the same expressiveness as existentially quantified
signatures with skolemization, except that they introduce names.

Alpha-conversion of floating components

Using again the generalized equivalence of Section 4.4.3, we can always rename a floating
component by introducing a new component on the right-hand side that copies it and then
permute them. For instance, we have:

⟨A : type t = u⟩ S ≾≿ ⟨A : type t = u · Z· type t′ = A.t⟩ S
≾≿ ⟨A : type t′ = u · Z· type t = A.t′⟩ S[t 7→ t′]
≾≿ ⟨A : type t′ = u⟩ S[t 7→ t′]

Combining these two facts, we see that floating components can play the role of ex-
truded existential types of Mω: a canonical signature ∃▼α.C can be encoded as a zipper
⟨A : type tα = A.tα⟩ S where the source signature S is obtained by substituting α for A.tα.
The other quantifications (universal and lambda) are always used for signatures that come
from elaboration of the source, and can therefore also be represented in ZipML. We leave the
technical details for future works.

4.5.3 Other properties

Normalization is a floating typing rule that can be called anytime. Normalization itself may
be performed by need, but also in a strict manner. It is therefore left to the implementation
to normalize just as necessary—as one would typically do with β-reduction.
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As a result, the inferred signature is not unique, returning different syntactic answers
according to the amount of normalization that has been done. Hence, we may have Γ ⊢ M : S
and Γ ⊢ M : S′ when S and S′ syntactically differ—even a lot! as one may contain a signature
definition expanded in the other.

Still, we should then have Γ ⊢ S′ ≈ S′′. That is, the inferred signatures should only differ
up to their presentation, but remain inter-convertible—and otherwise simplified in the same
manner.

One might expect a stronger result, stating that there is a best presentation where module
names would have been expanded as little as possible. This would be worth formalizing,
although a bit delicate. In particular, we probably wish to keep names introduced by the
user, but not let the algorithm reintroduce a name when it recognized an inferred signature
that was not named, but just happens to be equivalent to one with a name.

4.6 Missing features and Conclusion

We have presented ZipML, a source system for ML modules which uses a new feature, sig-
nature zippers, to solve the avoidance problem. ZipML also models transparent ascription,
delayed strengthening, applicative and generative functors and parsimonious inlining of sig-
natures.

Several essential features are still missing to bring ZipML on par with all features included
in OCaml.

The open and include constructs allow users to access or inline a given module. While
not problematic when used on paths, OCaml also allows opening structures Li and Yallop
[2017], which easily triggers signature avoidance, as we have shown in ?? on a restricted case.
We expect floating fields to easily model the opening of structures although some adjustments
will be needed. In particular, type checking of signatures will have to become an elaboration
judgment as mentioned in Section 4.3.7.

OCaml allows abstract signatures which amounts to quantify over signatures in functors.
This feature, while rarely used in practice, unfortunately makes the system undecidable Ross-
berg [1999]; White [2015]. In our context, as ZipML expands module type names only by
need. We conjecture that abstract signatures could be added to the system, as they should
not impact zippers. However, the undecidability of subtyping should be addressed, maybe by
restricting their instantiation.

Finally, the typechecking of recursive modules raises the question of double vision Dreyer
[2007a]; Nakata and Garrigue [2006]. By contrast, OCaml requires full type annotations,
along with an initialization semantics which can fail at runtime. All these solutions are com-
patible with ZipML. Another potential proposal would be to rely on Mixin modules Rossberg
and Dreyer [2013], which could fit well with floating fields.

We leave these explorations for future works. An implementation of floating components
into OCaml, as well as transparent ascription, should not be difficult, now that we have
a detailed formalization that also fits well with the actual OCaml implementation. This
remains to be done to appreciate the gain in expressiveness and verify that we do not loose in
typechecking speed. A mechanization of ZipML metatheory for which we only have paper-
sketched proofs would also be worth doing and would fit well with other efforts towards a
mechanized specification of OCaml and formal proofs of OCaml programs.

4.7 Fixes

Currently, the typing rules are still odd.



4.8. SIMPLIFICATION ALGORITHM 131

4.7.1 Do we have those Properties?

• If Γ ⊢ P : S and Γ ⊢ S ≈ S′, does Γ ⊢ P : S′ hold?

It does not seem so. But we have Γ ⊢
♢
P : S′.

• Γ ⊢ S ↓ S

No we can only normalize transparent signatures, module types. possibly under zippers.

• The following desirable property does not hold:

If Γ ⊢ S ↓ S′ then Γ ⊢ S ≈ S′

That is, normalization is not in the kernel of subtyping.

4.7.2 Desired properties

Rule Sub-S-Norm suggests that we could normalize on either side, and thus that normalization
is reflexive, one side doing nothing, but normalization is not reflexive! We should make it
reflexive—and transitive.

Or at least, Sub-S-Norm should be split into two rules

Sub-S-Norm
Γ ⊢ S1 ↓ S′1 Γ ⊢ S′1 ⩽ S2

Γ ⊢ S1 ⩽ S2

Sub-S-Norm
Γ ⊢ S2 ↓ S′2 Γ ⊢ S1 ⩽ S′2

Γ ⊢ S1 ⩽ S2

If we do this, then we have:

Prop
Γ ⊢ S ↓ S′

Γ ⊢ S ≈ S′

That is normalization would be in the kernel of subtyping.
More generally, I think we should allow replacing P by P ′ whenever Γ ⊢ P ▷ P ′, including

by congruence. This should preserve well-typedness, identities, and signatures. This would
also allow to define a normal form for paths.

4.7.3 Structural components inside floating ones

We may inline module type definitions of floating components. But we may not be able to
remove them from floating components, as they may appear in signature of functors argument
not only as a signature which could be inlined, but as a module type component.

4.8 Simplification algorithm

The simplification is presented incrementally but informally in Section 4.4.2. Here we, describe
the simplification of one zipper ⟨γ⟩ S where γ is (Ai : Di)I1. We asume Z : ⟨γ⟩ S, using Z as a
path to refer to both floating fields Z.Ai and structural fields of S (if any).

The simplification will perform a structual (top-down, left–to-right) visit of ⟨γ⟩ S and will
track floating fields Z.Ai and their submodules recursively, i.e., all paths of the form Z.Ai.X,
since only those fields may be an
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4.9 Global Simplification algorithm

XDR [ I think I am giving up the global simplification ]

The algorithm we presented in Section 4.4.2 simplifies one zipped signature at a time.
Thus to fully simplify a signature we would need to call it recursively on all zipped signatures,
inner signature first, which would the algorithm quadratic. The algorithm can be adapted
to perform the simplification of inner zippers altogether. The presentation is however more
involved.

We still asume that a pre-simplification pass reduces zippers to contain only essential
floating declarations. The algorithm takes as input a signature S that is well-typed in a
context Γ and output a signature S′ such that Γ ⊢ S ≾ S′. It first performs a top-down left-
to-right visit of S to build a graph of dependencies between nodes of S (e.g.,. all declaration
fields adn subsignatures of S). We then use nodes as a absolute reference to the declaration
or signature they represent.

In a second pass floating-fields are visited in reverse-order of dependences, and removed
when they were unaccessed before being subsumed by structural nodes, together with their
dependencies, thus possibly eanbling further simplifications. The second pass performs a sort
of garbage collection, but with more complex dependencies than in an simple GC algorithm.

Nodes are partially ordered by the subterm relation ⊸ within S. The initial post-order
traversal of S defines a total ordering ≺ on nodes that is actually compatible with (i.e., a
super relation of)⊸. During the visit, we build the additional edges.

4.9.1 Path equivalence

One difficulty to understand simplificaton is to understand and restrict equivalence. The
purpose of simplification is to find anchoring points for essential virtual type of structural
module fields. Namely, fields (type t = u) and (moduleX : S) such that P.t or (= P.X < S′)
is later used when P refers to this particular field. A type can only be an anchor for a virtual
field if it is equivalent to that field. This is a prerequisite. However, this is not sufficient. To
make anchoring simpler, we restrict the equivalence of fields.

For instance, one restriction is to only replace an application P1(P2) by another applica-
tion P ′

1(P
′
2) when P ′

1 and P ′
2 are equivakent to P1 and P2, respectively. This is sound but

incomplete.

Consider for instance,

1 module type S = sig ... end
2 module M : S = struct ... end
3 module X = struct
4 module F1 (Y : S) = struct module X = struct type t end end
5 module F2 (Y : S) = F1(Y).X
6 end
1 module type S = sig ... end
2 module M : S
3 module X : sig
4 module F1 (Y : S) : sig module X : sig type t end end
5 module F2 (Y : S) : sig type t = F1(Y).t end
6 end

Calling this environment Γ, we have Γ ⊢ X.F1(M).X.t ≈ X.F2(M).t. both types are actually
equivalent to (X.F1)(M).t in Γ. Clearly, however, Γ ⊢ X.F1 :X.F2 does not hold.
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Our solution is to use a more restrictive (and syntactic) definition of equivalence for an-
chorability with the property:

Γ ⊢ P1(P2).P ◁≈ Q

Q = P ′
1(P

′
2).P

′ Γ ⊢ P1 : (Y : Sa) → S Γ ⊢ P ′
1 : (Y : Sa) → S Γ ⊢ P1 ◁≈ P ′

1

Γ ⊢ P2 ◁≈ P ′
2 Γ,Z : S ⊢ Z.P ◁≈ Z.P ′

(It is possible to exhibit a inductive definition that has this property.)
With such a restriction, it may be simpler to track anchorable positions, since as sonne as

there is an application, we split anchorability into smaller problems.
One question is whether the above definition is satisfactory (sufficient): the example above

would be rejected, although the two paths are obviously equivalent; hence, it may perhaps
this not be good enough.

With this restriction, it is easier to see which definition could anchor another one. We may
somewhat compute normal form for paths and compare them. Without such a restriction,
anchorability of P.X or P.t when P contains an application is no so obvious. Still, in the
case of the previous example, it is obvious that X.F2(M).t could be an anchoring point for
X.F1(M).X.t—if there is not other use of F1.

4.9.2 Computing dependencies

We describe the simplification of a node zipped signature
〈
(Ai : Di)I1

〉
S.

XDR [ We temporarily consider a simpler form
〈
A1 : D1

〉
S1—a multiziper will

just make notations a bit heavier. ]
The algorithm proceeds by visiting nodes in ≺-order, transporting a typing environment

Γ during the visit as in the well-formnedness judgment Γ ⊢
〈
A : D

〉
S. However, we need to

name fields that will be visited in both D and S. For that purpose, we instead consider the
context equal to Γ ⊎A : D ⊎ Z : S.

We may then address floadting nodes A.P and structural Z.P where P is of the form X
or X.t. We use accessible node to designate a node that is either floating or structural. We
build a graph φ between accessible nodes.

The visit builds dependency direct and reverse edges. Reverse edges represent anchoring
options that would redirect a floating field to a structural field, under the condition that the
floating field could be removed. During the visit, we may also lock floating nodes, fields that
we know cannot be anchored since they are used before they could be anchored.

Path typing Γ ⊢ P : S is not deterministic as it allows, without enforcing, normalization.
We assume that there is a normalization operation ⌊Γ ⊢ P ⌋ and ⌊Γ ⊢ P.t⌋ that returns the
normal form P ′ of path P or u of type P.t in context Γ.

Normalization proceeds by following type and module type definitions. Both pro-
cesses are acyclic—as long as we recognize abstract type definition and module
identity definitions as self aliases and thus terminate.

The normal type ⌊Γ ⊢ P.t⌋ is a type u whose paths have all been normalized. Therefore,
remaining paths P ′.t′ are all abstract type definitions. Two abstract type definitions are the
same if and only if their normal forms are equal. Similarly, two paths have the same identity
if and only if their normal forms are equal. XDR [ Needs more precision ]

4.9.3 The visit

XDR [ The rests of this section is old material not up-to-date ]
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General Schema

Intuitively, and as a guideline, this amounts to simplifying the unzipped signature sigA D module
Z : S end and projecting it back. However, we proceed directly on the zipped signature in
two steps.

In a first step we collect information about the use of floating fields, and the possibility of
re-anchoring some abstract types of the zipper in S rather so that they can be moved after S
and dropped. This perform a left-to-right top-down visit of the floating declarations D, then
of the signature .

When visiting D, we collect information in a map φ from nodes of D addressed by their
paths from A to some state that is adjusted imperatively. When visiting S we continue
adjusting address the nodes of S using Z to refer to the toplevel signature as if we had Z : S
and we continue adjusting the mapping φ.

The state φ(P ) (where P is of the form A.P ) may be:

• UsedL where L is the list of nodes in D that depends on A.P . The state Used∅, is the
initial state of the node when it is first visited and made visible. This state can be set
during and only during the visit of D.

• Frozen: means that P is not anchorable. It is set during the visit of S if the field is used
in S before being anchorable.

• Anchorable (L)P ′: means that P is anchorable at path P ′, which must be of the form
Z, and depends on nodes in L. This is set during the visit of S if P ′ in an anchoring
position and the field was not frozen.

• AnchoredP : this will only be set after the visit of S.

We write ≺ the left-to-right depth-first ordering of D. A node P ′ may only appear in φ(P ) if
P ≺ P ′.

Finalizing

Finally, we use collected information to transform the
〈
A : D

〉
S into ⟨A : D1 · Z · D2⟩ S′. First,

we should split D into D1 and D2. We visit nodes in the ≺-order to adjust the states: XDR [
Need to be adjusted ]

• Anchorable (L)P : if a node of L is frozen, make it frozen, and recursively make its root
(the node immediately under A frozen). Otherwise set it to AnchoredP

• UsedL: if a node of L is frozen, freeze P . Otherwise reset it to Used∅.

Then, frozen fields are moved to D1 and all other fields are moved to D2.
The final step is to rewrite S into S′ (and in principle D2 into D′2 to take into account

the redirections after making some nodes of S anchoring points). In fact, fields of D2 will be
dropped and so need not be adjusted. XDR [ Normalizing D2 does not seem necessary
]

To do so, we collect the list of nodes at P marked AnchoredP0. We build a redirection
map P 7→ P ′ which applies the substitutions in a final visit of S.

The effect is intuitively simple but technically somewhat tricky as we need to not only
substituted the definitions of anchoring nodes (easy), but also to redirect the older paths that
pointing to the floating components to point back to their “new anchor” and we must do so
using self references, as even though we used Z to refer to nodes of S, the signature S is not
necessarily transparent.
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The key is to reinstall self-references as far as possible. When at location P0 we must
replace an old path P1 by a new path P2, we should actually replace P1 by P2 \P0 defined to
find the “shortest” redirection via the use of closest self-references in common scope.

XDR [ We need to describe the substitution more precisely ]
Finally, we have described the simplification of zipped signature

〈
A : D

〉
S. We may sim-

plify arbitrary zippers ⟨γ⟩ S by iterating the simplification of a simple zipper. Then, we may
simplify an arbitrary signature S by recursively simplifying its zippers, inner ones first. The al-
gorithm is not efficient as it will visit the signature several times. We believe the simplification
of all zippers could be done altogether without iteration.





Chapter 5

Advanced features

5.1 Hello

5.2 World
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Conclusion
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