
Université Paris Cité
École Doctorale 386 — Sciences Mathématiques de Paris Centre

Inria

Retrofitting and strengthening the ML module system

Clément BLAUDEAU

Thèse de doctorat d’informatique

dirigée par Didier RÉMY

présentée et soutenue publiquement le 11 décembre 2024 devant un jury composé de :

Claudio RUSSO Senior research scientist, DFINITY (Industry) (rapporteur)
Jeremy YALLOP Associate professor, University of Cambridge (UK) (rapporteur)
Jacques GARRIGUE Professor, Nagoya University (JP) (examinateur)
Hugo HERBELIN Directeur de recherche, Inria et Université Paris Cité (examinateur)
Assia MAHBOUBI Directrice de recherche, Inria (examinatrice)

Didier RÉMY Directeur de recherche, Inria (directeur)
Gabriel RADANNE Chargé de recherche, Inria (invité, co-encadrant)

À Héloïse

5

Abstract

ML modules come as an additional layer on top of a core language to offer large-scale notions
of abstraction and composition. They contributed to the success of OCaml and SML. While
modules are easy to write for common cases, their advanced use may become tricky, as it is
easy to run into edge cases and irregularities. Additionally, despite a long line of works, their
meta-theory remains difficult to comprehend, with involved soundness proofs. In this thesis
we propose a consolidation for the design of the type system of ML modules.

To this aim, we developed two type systems for an OCaml-like language, including both
applicative and generative functors, extended with transparent ascription signatures. The
first type system is called Mω and is built on a prolific line of works that approached ML
modules by translation to Fω, the higher-order polymorphic lambda calculus. Mω produces
signatures in an OCaml-like syntax extended with Fω quantifiers. It treats abstraction via
the introduction of quantified abstract types variables and the extrusion of the quantifiers
to make them cover the right scope. We provide a reverse translation from Mω signatures
to path-based source signatures along with a characterization of signature avoidance cases.
The soundness of the type system is shown by elaboration in Fω. We improve over previous
encodings of sealing within applicative functors, by the introduction of transparent existential
types, a weaker form of existential types that can be lifted out of universal and arrow types.
This shines a new light on the form of abstraction provided by applicative functors and brings
their treatment much closer to those of generative functors.

The second type system is called ZipML and is built on the path-based, fully-syntactic
line of works. Unlike previous approaches, ZipML avoids the signature avoidance problem by
introducing floating fields, which act as additional fields of a signature, invisible to the user
but still accessible to the typechecker. In practice, they are handled as zippers on module
signatures, and can be seen as a lightweight extension on existing signatures. Floating fields
allow to delay the resolution of signature avoidance as long as possible or desired. Since they
do not exist at runtime, they can be simplified along type equivalence, and dropped once
they became unreachable. We give a simple criterion for the simplification of floating fields
without loss of type-sharing. We present a principled strategy that implements this criterion
and performs much better than OCaml. Remaining floating fields, instead of polluting the
code, may disappear at signature ascription, notably when using top-level interface files.
Residual unavoidable floating fields can be shown to the user as a last resort, either to be
explicitly resolved by the user, or kept until link time. The correctness of the type system
is proved by elaboration into Mω, which has itself been proved sound by translation to Fω.
The language includes module type definitions that are returned in inferred types and kept
as long as possible. ZipML has been designed to be a specification of an improvement over
OCaml with transparent ascription, a better solution to signature avoidance, while staying
close to the source language and to its implementation.

Keywords Programming languages, modularity, modules, type systems, ML, OCaml, lambda
calculus, existential types, signature avoidance, signature strengthening, applicative functors,
System F

6

Résumé

Cette thèse traite de la description formelle, de la conception et de la transformation de
la couche modulaire des langages fonctionnels de la famille ML, en particulier du langage
OCaml. Dans cette famille de langages, la modularité est fournie par une sur-couche spécifique
séparée, qui constitue en soit un petit calcul. Bien que l’emploi courant des modules soit aisé,
leur utilisation avancée révèle parfois des irrégularités et des cas limites. Par ailleurs, leur
méta-théorie reste complexe, en particulier pour les preuves de sureté du typage.

Dans l’objectif de proposer une amélioration de cette couche modulaire, cette thèse pré-
sente deux systèmes de types pour un langage proche d’OCaml, contenant à la fois des fonc-
teurs applicatifs et génératifs, ainsi que des signatures ascriptions transparentes. Le premier
système de types, Mω, s’appuie sur une ligne prolifique de travaux qui abordaient les modules
ML par traduction vers Fω, le lambda-calcul polymorphique d’ordre supérieur. Mω produit des
signatures dans une syntaxe proche de OCaml, mais qui est étendue avec des quantificateurs
de Fω. L’abstraction de types est traitée par l’introduction de variables de type quantifiées.
L’extension de leur portée est simulée par un mécanisme d’extrusion. Une traduction inverse
des signatures de Mω vers des signatures sources est fournie, ainsi qu’une caractérisation
des cas d’évitement de signature – un problème classique des systèmes de modules. La su-
reté du typage est obtenue par une élaboration bien typée des termes de modules dans Fω.
L’encodage de l’ascription dans le corps des foncteurs applicatifs est grandement simplifié par
l’introduisant des types existentiels transparents, une forme plus faible de types existentiels
qui peuvent être extraits au travers des quantifications universelles et des types de fonctions.
Cela démontre que l’abstraction au sein des foncteurs applicatifs est en réalité une forme plus
restreinte de types existentiels que ce qui était précédemment estimé.

Le second système de types, ZipML, est entièrement syntaxique et maintiens les chemins
dans les signatures. ZipML utilise une approche paresseuse et préventive du renforcement de
signatures. Par ailleurs, ZipML évite le problème d’évitement de signature en introduisant des
champs flottants, qui agissent comme des champs supplémentaires d’une signature, invisibles
pour l’utilisateur mais toujours accessibles par le vérificateur de types. En pratique, ils sont
traités comme des zippeurs sur les signatures de modules, et constituent donc une extension
relativement restreinte du langage de signatures. Les champs flottants permettent de retarder
l’évitement de signature aussi longtemps que possible ou souhaité. Comme ils ne sont pas
présent à l’exécution, ils peuvent être simplifiés, réordonnés ou supprimés une fois devenus
inaccessibles. Cependant, la simplification des champs flottants se fait sans perte de partage.
Nous présentons une stratégie qui implémente ce critère. Les champs flottants restants, au lieu
de polluer le code, disparaissent lors de l’ascription, en particulier entre le fichier de code et
celui d’interface. S’il reste malgré tout des champs flottants, ces derniers peuvent être présentés
à l’utilisateur dans un message d’erreur. La correction du système de types est prouvée par
une élaboration dans Mω, qui a elle-même été prouvée correcte par traduction vers Fω. Le
langage inclut des définitions de types de modules qui sont retournées dans les types inférés et
conservées aussi longtemps que possible. ZipML a été conçu comme une spécification d’une
amélioration par rapport à OCaml avec une ascension transparente, une meilleure solution
au problème d’évitement de signature, tout en restant proche du langage source et de son
implémentation.

Mots clés Langage de programmation, modularité, modules, système de types, ML, OCaml,
lambda calcul, types existentiels, évitement de signature, renforcement de signature, foncteurs
applicatifs, Système F

Résumé substantiel

Cette thèse traite de la description formelle, de la conception et de la transformation de
la couche modulaire des langages fonctionnels de la famille ML, en particulier du langage
OCaml. Elle est rédigée en anglais. Cependant, le lecteur pourra trouver dans cette section
un résumé substantiel en français.

Introduction

La conception, l’étude et l’exploitation de systèmes complexes, caractérisés par un nombre
de composants et d’interactions tels qu’il est impossible de les appréhender tous à la fois,
nécessitent des outils particuliers, que l’on regroupe sous le terme de modularité. Les systèmes
sont ainsi découpés en modules, qui constituent des unités relativement autonomes remplissant
une fonction précise, n’interagissant avec le reste du système qu’au travers d’une interface bien
définie. Les modules peuvent être ainsi considérés comme des boîtes noires, dont les détails
internes peuvent être ignorés pour se concentrer sur les autres éléments du système.

Dans le cadre de la conception de logiciels complexes, la tâche des architectes logiciels
est précisément de prévoir une séparation en modules qui soit pertinente, notamment en
essayant de maximiser la réutilisation de modules fournissant une fonctionnalité utile à diffé-
rents endroits. Parmi les outils à la disposition des architectes, les langages de programmation
peuvent fournir des fonctionnalités plus ou moins puissantes pour encourager la construction
d’un système modulaire. Parmi la multitude de langages, une famille de langage fonctionnels
se distingue par un choix technique particulier pour ses outils de modularité: les langages ML
(pour «Meta-Langage »). Dans cette famille, qui contient OCaml, SML, Moscow ML, etc,
la modularité est fournie par une couche séparée du reste du langage, qui constitue en soit un
calcul.

Bien que l’emploi courant de la couche de modules soit aisé, son utilisation avancée révèle
parfois des irrégularités et des cas limites. Par ailleurs, sa méta-théorie reste complexe, en
particulier pour les preuves de sureté du typage. Dans l’objectif de proposer une amélioration
de cette couche modulaire, cette thèse présente deux systèmes de types pour un langage proche
d’OCaml.

Contributions

Cette thèse présente les contributions scientifiques suivantes, regroupées autour de deux sys-
tèmes de types: Mω et ZipML.

Mω

Le premier système de type, Mω, est une extension de travaux existants sur la modélisation
de la couche modulaire des langages ML qui s’appuient sur la traduction des signatures vers
le langage Fω, le lambda-calcul polymorphique d’ordre supérieur. Cette lignée de travaux,
surnommée F-ing (Rossberg et al. [2014]) d’après la publication de référence éponyme, propose
d’interpréter l’abstraction comme une introduction d’une variable de type abstraite quantifiée.
Le quantificateur, respectivement, existentiel, universel ou lambda, indique si l’abstraction
sert pour, respectivement, l’ascription, le polymorphisme, ou la définition par l’utilisateur de
champs de signatures.

7

8

Ascription transparente Mω supporte les fonctionnalités principales des modules ML, en
particulier les foncteurs applicatifs et génératifs, ainsi qu’une extension de la notion d’alias de
module: les signatures transparentes. La clarification du rôle de cette construction et de son
interaction avec les foncteurs applicatifs pour le maintien de la sureté de l’abstraction est une
contribution de cette thèse.

Extrusion et existentiel transparents La principale difficulté technique de l’approche
F-ing (Rossberg et al. [2014]) est l’extrusion du quantificateur: après avoir été introduit au ni-
veau du champ de type abstrait, le quantificateur doit être déplacé pour que sa portée couvre
toute la zone où le type est visible. Or, si cette extrusion au travers des types d’enregistrements
(qui représentent des signatures structurelles) est relativement aisée, l’extrusion au travers des
types polymorphes et des types de fonctions, appelée skolémisation, nécessaire pour la repré-
sentation de l’ascription au sein des foncteurs applicatifs, est impossible. Une contribution de
cette thèse est précisément l’introduction d’une nouvelle forme de quantification existentielle
plus restreinte, dite transparente, pour laquelle l’extrusion au travers des types polymorphes
et des types de flèches est possible. Or, Mω démontre que cette forme restreinte est suffisante
pour modéliser l’ascription au sein des foncteurs applicatifs. D’un point de vue technique, les
variables existentielles transparentes maintiennent l’expression de type qui a été cachée lors
de l’introduction de la variable, sans pour autant permettre de rétablir cette expression et de
« rompre l’abstraction ».

Traduction inverse des signatures Mω, comme les autres systèmes de types de l’approche
F-ing (Rossberg et al. [2014]), produit des signatures qui contiennent des quantificateurs. La
traduction inverse, vers le langage de signature d’origine où les types abstraits sont introduits
par des champs de types, se heurte au problème de l’évitement de signature. Une contribution
de cette thèse est l’énoncé de principes pour la traduction inverse, appelée ancrage. Ces
principes donnent un cadre clairs pour les cas de succès et les cas d’échec de l’évitement de
signature, en proposant une restriction à l’ordre 1 pour les foncteurs applicatifs. Un algorithme
respectant ces principes est décrit.

Signatures abstraites Mω modélise également une fonctionnalité spécifique à OCaml et
jamais traitée dans la littérature: les signatures abstraites. Ces dernières permettent l’ascription
et le polymorphisme à l’échelle des modules. Dans cette thèse, je propose une restriction de
cette fonctionnalité pour maintenir sa décidabilité: la prédicativité. Un encodage dans une
extension de Fω avec du polymorphisme de sortes est donné.

ZipML

Le second système de type, nommé ZipML, est plus unique en son genre. S’il s’appuie né-
cessairement sur des travaux antérieurs, il présente plusieurs mécanismes originaux qui le
rendent relativement inclassable. À l’inverse de Mω, ZipML travaille directement avec les si-
gnatures syntaxiques, c’est à dire celles que peut écrire l’utilisateur et qui représentent donc
l’abstraction avec des champs de type abstraits. Un avantage immédiat est que l’intuition de
l’utilisateur, souvent basée sur la syntaxe plutôt que sur une traduction vers un autre langage,
peut être respectée. En contrepartie, le système est nettement plus intriqué que Mω, et les
preuves de ses propriétés sont plus difficiles.

Fermeture et évitement de signature Comme mentionné ci-dessus, une difficulté ma-
jeure des systèmes de modules est que la syntaxe des signatures n’est pas suffisamment expres-
sive pour représenter le résultat de tous les calculs de modules: certains calculs d’apparence
correcte n’admettent pas de signature. Pour éviter cette difficulté, Mω utilise un langage plus

9

expressif, puis traite de ce problème dans un second temps, lors de l’ancrage. ZipML intro-
duit une nouvelle construction, la fermeture de signature, qui permet de décrire une signature
résultant d’une projection, où un certain nombre de champs sont devenus invisibles. Au lieu
de disparaître et de provoquer un évitement de signature, ces derniers sont conservés comme
champs flottants dans la fermeture de la signature. Les champs flottants sont visibles pour
le vérificateur de type, mais pas pour l’utilisateur qui ne peut mentionner que les champs
visibles de la signature résultante. Cette extension, qui s’inspire fortement de la technique du
« zipper »en programmation fonctionnelle est relativement orthogonale au reste du langage,
ce qui permet d’espérer que son ajout dans un système existant comme OCaml ne nécessite
pas une restructuration complète du compilateur. Ainsi, l’introduction de fermetures de si-
gnatures pour traiter le problème d’évitement de signatures est une contribution majeure de
cette thèse.

Simplification des fermetures Si les champs flottants permettent de conserver les infor-
mations de types nécessaires à la bonne formation des signatures, ils peuvent devenir inutiles
au gré des opérations faites sur le module correspondant. ZipML utilise alors une opération
de simplification, analogue à l’ancrage de Mω, qui parcourt les champs flottants pour tenter
d’effacer ces derniers au profit de champs visibles de la signature, dans les cas où cela est
possible. Cette opération est un cas particulier du sous-typage, ce qui garantit sa sureté, qui
par ailleurs préserve toutes les égalités de types de la partie visible de la signature. En consé-
quence, la simplification préserve le typage au sens suivant: simplifier n’empêchera jamais
de continuer le typage. C’est une différence majeure avec la stratégie actuelle d’OCaml qui
procède à une abstraction parfois excessive des champs de types concernés par l’évitement de
signature.

Renforcement Les systèmes de modules syntaxiques doivent utiliser une opération de ré-
écriture des signatures appelée renforcement afin d’obtenir un partage des types abstraits
entre deux copies d’un même module. Cette opération est parfois présentée comme une règle
de typage flottante, non dirigée par la syntaxe. Il est alors difficile de savoir exactement quelles
égalités de types sont préservées ou non, ce qui peut compliquer l’implémentation ou la preuve
de propriété du système. ZipML adopte une stratégie simplificatrice: le renforcement a priori.
Ainsi toutes les signatures qui sont ajoutées dans l’environnement de typage sont renforcées
immédiatement. Les types abstraits sont donc représentés par des champs pointant vers eux-
mêmes. Cette stratégie évite l’ajout d’une règle de renforcement a posteriori et constitue une
contribution de cette thèse.

Pris individuellement, le renforcement a priori pourrait paraître coûteux: il impose une
réécrire à toutes les signatures, mêmes celles de modules jamais dupliqués. Or, une autre
innovation technique évite ce problème: le renforcement paresseux. Plutôt que de réécrire
la signature, ZipML réutilise le mécanisme de signature transparente déjà présent dans Mω

pour marquer syntaxiquement que la signature devrait être renforcée, mais en ne le faisant
effectivement qu’à la demande. Le renforcement n’est donc plus couteux et peut être fait a
priori sans perte de performance. La technique de renforcement paresseux a priori est une
spécificité de ZipML et une contribution de cette thèse.

Conservation des définitions Les langages de modules ML offrent tous la possibilité
pour l’utilisateur d’écrire des signatures, de les nommer, et d’utiliser ces noms courts plutôt
que l’expression complète de la signature, qui peut être très longue. Or, dans les efforts de
formalisation précédents, incluant Mω, ces noms courts étaient effacés au profit du contenu des
signatures dans le résultat du typage. À l’inverse, ZipML conserve les noms des définitions de
signatures dans sa représentation interne, qui ne sont effacées qu’au besoin par une opération
de normalisation. Même si ce problème, parfois dit de pliage-dépliage des définitions, est

10

connu et traité dans d’autres contextes, une contribution de cette thèse est de l’intégrer dans
un système de modules.

Plan

Ce manuscrit est constitué comme suit. Le chapitre 2 sert d’introduction étendue aux systèmes
de modules ML avec une attention particulière sur les mécanismes d’abstraction. Dans le
chapitre 3, je présente le langage qui sert d’étude pour le reste du document. Il s’apparente
à OCaml, même si quelques aspects sont traités différemment. Le chapitre 4 est consacré à
la présentation de Mω (et de Fω). Au delà de la présentation des jugements et des règles de
typage, ce chapitre contient la description de l’ancrage, ainsi que l’introduction des existentiels
transparents dans la preuve de sureté du système. Il se termine par le traitement des signatures
abstraites. Le chapitre 5 est lui dédié à la présentation de ZipML. Après une introduction
au typage avec des fermetures, les différents jugements du systèmes sont discutés, ainsi que
le mécanisme de simplification. Une preuve de sûreté par traduction vers Mω est présentée.
Le chapitre 6 contient une discussion des autres fonctionnalités des systèmes de modules, non
traitées dans cette thèse, mais qui offrent ainsi au lecteur une vue d’ensemble du domaine de
recherche. Enfin, la conclusion se trouve au chapitre 7.

11

Remerciements

Je souhaite remercier toutes les personnes qui m’ont aidé dans l’aventure scientifique – mais
aussi nécessairement personnelle – qu’est la rédaction d’une thèse. En premier lieu, je remercie
Didier Rémy, mon directeur de thèse, qui a été tout au long de ces 4 années d’une disponibilité
exceptionnelle, toujours prêt à discuter de nouvelles idées ou à m’aider à venir à bout de
difficultés techniques. Au delà des langages de programmation et des systèmes de types,
j’ai appris auprès de lui l’exigence de la clarté dans la pensée scientifique. Je tâcherai de
continuer à maintenir la même ambition de l’excellence et de la rigueur dans mes travaux
futurs. Je remercie également Gabriel Radanne qui a co-encadré ma thèse depuis Lyon. Avec
nos nombreuses réunion en visio et mes quelques escapades lyonnaises j’ai pu profiter de son
enthousiasme à toute épreuve, de son expérience et de son approche pragmatique.

J’ai eu la chance de faire ma thèse dans l’équipe Cambium, qui m’a apporté un environne-
ment scientifique exceptionnel, ouvert et de haut-niveau. Je remercie ses membres permanents:
Damien Doligez, Yannick Forster, Xavier Leroy, Jean-Marie Madiot, Luc Maranget, François
Pottier. En particulier, je remercie François qui, par sa charge de direction de l’équipe, m’a
permis de réaliser ma thèse dans des conditions privilégiées jusqu’à la soutenance et qui, par la
relecture de mes papiers, m’a apporté de nombreuses remarques et suggestions d’améliorations
pertinentes. Merci à Florian Angeletti, que j’ai interrompu dans son travail de nombreuses
fois en mentant sur le fait que ma question ne prendrait que «quelques secondes». Je re-
mercie chaleureusement Alexandre Moine, qui a réalisé sa thèse en même temps que moi,
pour nos nombreuses discussions scientifiques et son soutien dans les démarches administra-
tives. Je remercie Basile Clément et Chiara Daini avec qui j’ai partagé mon bureau et des
séances d’escalade. Je remercie également les autres membres de l’équipe, actuels et anciens:
Nathanëlle Courant, Paulo Emilio de Vilhena, Rémy Seassau, Samuel Vivien, Irene Yoon.

Je souhaiterais également remercier les personnes qui m’ont aidé dans mon parcours scien-
tifique, tout particulièrement: Natarajan Shankar, Jean-Christophe Filliâtre, Viktor Kuncak,
Fenguyn Liu, Gabriel Scherer.

L’aventure de la thèse a aussi été rendue possible par le soutien familial et amical. Je
remercie mes parents, Anne-Lucie et Philippe, mes frères et ma sœur, Bénédicte, Grégoire
et Théodore. Je remercie également mes amis qui m’ont aidé pendant ces années de thèse,
m’écoutant raconter des parties parfois cryptiques de mon sujet de recherche: Aurélien, Benja-
min, Benoît, Corentin, Céline, Elliott, Étienne, Gaëlle, Louis, Pierre, Pierre, Valentin et tous
les autres. Merci.

Enfin, je n’aurais pas commencé, poursuivi ou réussi à finir ma thèse sans le soutien et
l’aide constante d’Héloïse, mon épouse.

Contents

1 Introduction 17
1.1 Thesis overview . 19
1.2 Contributions . 20
1.3 Research Output . 20

2 Features and challenges of a modern module system 23
2.1 Basic modularity . 24
2.2 Functors and abstraction . 28

2.2.1 Applicative and Generative Functors 28
2.2.2 Abstraction Safety and Granularity of Applicativity 30
2.2.3 Module level equalities and aliasing . 31
2.2.4 Aliases and transparent ascription . 33

2.3 A Key Challenge: the Signature Avoidance Problem 36
2.3.1 Introduction to the avoidance problem 36
2.3.2 Strategies . 38
2.3.3 Avoidance with applicative functors . 39
2.3.4 Signature avoidance in practice . 42

2.4 Module-level abstraction . 42
2.4.1 Abstract signatures . 42
2.4.2 Challenges of abstract signatures . 44
2.4.3 Simple abstract signatures . 46

3 The ML source system 49
3.1 Syntax . 49

3.1.1 Name-spaces . 52
3.1.2 Shadowing . 53

3.2 Semantics . 53

4 Mω 55
4.1 The Mω type system . 56

4.1.1 Overview and technical details . 56
4.1.2 Signatures type-checking . 58
4.1.3 Subtyping . 62
4.1.4 Module Expressions type-checking . 65

4.2 Identity, Aliasing, and Type Abstraction . 67
4.2.1 A source-to-source transformation . 67
4.2.2 Derived typing system . 70
4.2.3 Property of identity tags . 70

4.3 Rebuilding Source Signatures . 75
4.3.1 The Expressiveness Gaps of the Source Syntax 75
4.3.2 The Anchoring Process . 79
4.3.3 Properties of Anchoring . 85

4.4 The Foundations: Fω Elaboration . 89
4.4.1 Fω with Kind Polymorphism . 89
4.4.2 Encoding of Signatures . 90
4.4.3 Sharing Existential Types by Repacking 92
4.4.4 Transparent Existential Types and Their Lifting Through Function Types 93
4.4.5 Implementation of Transparent Existential Types in Fω 96

13

14 CONTENTS

4.4.6 Elaboration . 96
4.4.7 Properties of elaboration . 103

4.5 Abstract signatures . 105
4.5.1 Key intuitions of abstract signatures 105
4.5.2 Extension of Fω . 107
4.5.3 Typing rules . 109

4.6 Discussion . 112
4.6.1 Signature artifacts . 112

5 ZipML 113
5.1 Motivation and challenges of a syntactic system 114

5.1.1 Signature avoidance . 114
5.1.2 Strengthening . 115
5.1.3 Lazy expansion of definitions . 116

5.2 An introduction to floating fields . 116
5.2.1 Expressivity . 116
5.2.2 Chaining zippers . 117
5.2.3 Zipper simplification . 118

5.3 Formal presentation . 120
5.3.1 Overview . 120
5.3.2 Grammar extensions . 121
5.3.3 Strengthening . 123
5.3.4 Path typing, resolution and normalization 124
5.3.5 Subtyping . 126
5.3.6 Signature typing . 130
5.3.7 Module typing . 131

5.4 Resolving signature avoidance by zipper simplification 133
5.4.1 Subtyping with zippers and narrow subtyping 134
5.4.2 Simplification overview . 135
5.4.3 Dropping a field . 136
5.4.4 Moving away a field . 136
5.4.5 Splitting a field . 138
5.4.6 Skipping a field . 139
5.4.7 Simplification algorithm . 140
5.4.8 Preservation of typability . 141

5.5 Properties . 143
5.5.1 Soundness of ZipML by Elaboration in Mω 143
5.5.2 Zipper renaming, introduction, and extrusion 149
5.5.3 Completeness of ZipML with respect to Mω 150
5.5.4 Other properties . 152

5.6 Discussion . 152

6 Advanced features 155
6.1 Composition . 156

6.1.1 Hierarchical and flat composition . 156
6.1.2 Recursive composition . 159

6.2 Other features . 161
6.2.1 Core and module language interactions 161
6.2.2 Extending the signature language . 163
6.2.3 Interacting with the inference of signatures 165

7 Conclusion 167

List of Figures

1 Basic modularity . 24
2 Applicative/Generative Functors . 29
3 Example of a breach of abstraction safety . 30
4 Example of a use-case for transparent signatures 35
5 Visual representation of the avoidance problem 38

6 Source language – syntax . 50

7 Mω – Syntax . 56
8 Mω – Wellformedness judgments . 58
9 Mω – Signature typing . 59
10 Mω – Example of signature elaboration . 61
11 Mω – Subtyping . 62
12 Mω – Module expressions typing . 68
13 Identity tags source-to-source transformation 69
14 Mω – Anchoring . 82
15 Mω – Untagging . 85
16 Fω – syntax . 90
17 Fω – typing . 91
18 Fω – transparent existentials . 94
19 Fω – Implementation of transparent existentials as a library 97
20 Coq – Implementation of transparent existentials 98
21 Mω elaboration - subtyping . 99
22 Mω elaboration – typing . 101
23 Fω extension – syntax . 107
24 Fω extension – wellformedness . 108

25 ZipML – relationship between judgments . 120
26 ZipML – Syntax extension . 122
27 ZipML – Strengthening . 123
28 ZipML – Path typing and path resolution . 125
29 ZipML – Signature and type normalization 126
30 ZipML – Subtyping . 127
31 ZipML – Signature typing . 130
32 ZipML – Typing rules . 132

33 Summary of language constructions for composition 157

15

Chapter 1

Introduction

The purpose of abstraction is not to be vague, but to create a new semantic
level in which one can be absolutely precise

- Edsger Dijkstra

The most complex systems that humans have built are made out of software. The ex-
ponential increase in computational power of computers have allowed software engineers to
design systems of ever growing size and intricacy, fulfilling more and more tasks. Designing,
operating and upgrading those systems is challenging, as our limited human brains cannot
grasp them fully at once.

Complex systems are characterized by a large number of components and a large number of
interactions between those components. They often display emergent (mis)behaviors [Mogul,
2006] like deadlocks, unwanted synchronization, phase change, oscillation, etc.– where no
single part of the system was misbehaving. They also suffer from a propagation of effects,
where local events affect the whole system.

To make complex systems manageable we break them down into smaller parts, called
modules. Modules are self-contained units that provide a certain function and interact with
the rest of the system through a well-defined interface. Crucially, one can abstract the internal
details of a module and see it as black-boxes, reducing the overall complexity of the system.
This makes it possible to consider the system (or parts of the system) at different levels of
abstraction. Besides, modules can be reused throughout the system (or with other systems),
which both reduces the overall complexity by factorization and reduces the cost of development
and maintenance. Finally, the presence of interfaces within the system can also limit the
propagation of unwanted effects (errors, malicious actors, etc.). Overall, the two core use-
cases of modularity – structuring systems in functionally-relevant units and making reusable,
standardized components – are both enabled by the creation of interfaces and the ability to
abstract the content of a module. Finally, the actual system is obtained by combining modules
together, which is called composition.

Examples of modular designs are everywhere. The internet relies on a network stack that
is split into layers: each layers expects some properties of the previous layer and provides
a specific functionality to the next. The Linux kernel is split itself into kernel modules.
Programs that run over an operating system do not access the memory itself but have an
abstract view of it. On a different domain, humans bodies, seen as biological systems, are
also organized in modules. Organs are structural modules, while cells are reusable modules.
Within organs, and within cells, there can be other modules. However, biological systems
often have leaky interfaces, and effects can propagate in all sorts of ways. One could even go
as far as saying that understanding the human body is hard merely because bodies are not
modular enough.

Within a program, the programming language plays an important role for modularity, as it
provides the tools to build and compose modules, and to write interfaces. While it is possible
to write modular code and enforce interfaces only with conventions between developers, it
is much more convenient, flexible, and secure to have language features to handle modules,
and static guarantees that interfaces are met. In the context of software development, the
need for modularity appears both for the dynamic objects, i.e., the actual modules that will
make up the running program, and for developing the code itself. Typically, for the latter,
developers want to be able to separate name-spaces to use locally-relevant short names that

17

18 CHAPTER 1. INTRODUCTION

could clash with unrelated synonyms. Similarly, in large programs it is essential to be able to
have separate compilation, and not have to recompile the whole project for every change. To
that aim, modules are put into compilation units that can be compiled separately. Therefore,
those needs come in addition to the ability to create modules and interfaces and compose
them.

Quickly after the first assembly languages were developed, functions (sometimes called
routines) were added to factor out common code patterns, as well as the ability to break
down programs in separate files. As the field of programming languages progressed, many
features were implemented to provide users with modularity and abstraction. Three – non
exclusive – approaches dominate in current languages: object-oriented programming (OOP),
type-classes and module systems. In this thesis, we focus on the latter, and more specifi-
cally on the module systems of the languages of the ML family (SML, OCaml, Moscow
ML, etc.), which are renowned for their expressivity and flexibility. Overall, they are niche
compared with the mainstream languages like C++, Java, Js or Python. Yet, their original
design – especially regarding modularity – has inspired number of other languages and re-
searchers. Their foundational approach to structure and safety slowly but surely percolates
into mainstream uses and contributes to a world with fewer bugs and better programs.

ML family of languages The ML family originated from a proof automation language for
the LCF theorem prover [Milner, 1972] called the meta-language, hence “ML”. While several
dialects of ML were developed in the 1980’s, an effort to write a standard for ML led to the
creation of Standard ML (SML) [Milner et al., 1997]. While earlier ML dialects had limited
support for modules, SML integrated the works of Harper et al. [1987] and Tofte [1990] and
had a full-fledged module system, provided as a separate language on top of the rest of the
language, called the core-language. The module language was corrected and improved in the
revised definition of SML [Milner et al., 1990], integrating the works of Leroy [1994] and
Harper and Lillibridge [1994] (among other). In parallel, the OCaml language emerged and
diverged from SML, notably because the language integrated objects [Rémy and Vouillon,
1998], but also because the module language used applicative functors [Leroy, 1995] (instead
of SML’s generative functors) in its module language. From there, an important research
effort went into extending the module systems of SML and OCaml with all sorts of features,
which we discuss throughout Chapter 2.

A glimpse of ML modules In ML, the simplest form of module is a structure: a
collection of type and value definitions that are in a shared namespace, using the key-
words struct ... end. A simple structure that provides a library to handle sets of integers,
called IntSet is given on the left-hand side below. It internally represents sets as ordered lists.

1 module IntSet = struct
2 type t = int list
3 let empty = []
4 let rec add x s = match s with
5 | [] → [x]
6 | y::s’ →
7 if x = y then s
8 else if x < y then x::s
9 else y::(add x s’)

10 let union s1 s2 = ...
11 let intersection s1 s2 = ...
12 end
13 let s0 = IntSet.add 42 IntSet.empty
14

15 (* Accepted by the compiler *)
16 let wrong = IntSet.union s0 [3,3,1]

17 module type Set = sig
18 type t
19 let empty : t
20 let add : int → t → t
21 let union : t → t → t
22 let intersection : t → t → t
23 end
24

25 module AbsSet = (IntSet: Set)
26 let s1 = AbsSet.add 42 AbsSet.empty
27

28 (* Rejected by the compiler *)
29 let wrong = AbsSet.union s1 [3,3,1]

1.1. THESIS OVERVIEW 19

Fields of a structure can be accessed with the dot notation, as at line 13. However, there is
no interface control yet: the internal details of IntSet are exposed. A user might wrongly
consider a list of integers that contains duplicates or is not sorted as an IntSet.t set, as done
at line 16. This would produce wrong results and might even crash. To prevent this, we need
to introduce proper interfaces.

The interface of a module is called a signature. Users can define their own signatures
with the keywords sig ... end, and give them a name with the keyword module type, as
done on the right-hand side above. Abstraction of internal details can be done by forcing a
module to be seen through a signature, which is called an ascription – it is done with the
syntax (Module:Signature) at line 25. It can be used to hide fields (similar to the mechanism
of private fields in OOP) or to make type definitions abstract. In the above example the
definition of the type of sets in AbsSet is made abstract: it is no longer considered equal
to int list. Abstraction forces users of the AbsSet module to only interact with the sets it
produces through the functions provided by the module. The wrong code at line 29 would
not be accepted by the compiler.

Formalization effort As the module systems of ML languages became more and more
expressive, an important research effort was also put into understanding their properties.
However, providing a theoretical background for the seemingly simple mechanism of abstract
type fields turned out to be hard. In their foundational paper of 1985, Mitchell and Plotkin
[1985] suggested to represent abstract types as existential types. This idea was extended
by Russo [2004] who introduced the extrusion mechanism: existential types defined in a
module are gathered and actually quantified at the top level of modules to extend their scope.
Applicative functors were identified as having higher-order existential types by Biswas [1995],
and the extrusion mechanism was extended to support skolemization [Russo, 2004; Rossberg
et al., 2014]. In this setting the syntactic, user-writable signatures are elaborated in the more
expressive language of types of the System Fω– the higher-order polymorphic lambda calculus
– and type-sharing between modules is expressed differently: abstract type fields actually
introduce existential type variables, possibly higher-order, quantified in front of the signature,
so that two modules that share an abstract type simply refer to the same type expression.
This has culminated in the successful, so-called, F-ing (Rossberg et al. [2014]) line of works
[Shao, 1999; Russo, 2004; Rossberg and Dreyer, 2013; Rossberg et al., 2014; Rossberg, 2018;
Blaudeau et al., 2024] (among others) where most significant ML module features are specified
and proven sound by elaboration in Fω, thus reusing the standard meta-theoretical properties
of Fω. This is a real benefit compared with purely syntactic systems for ML modules, which
use somewhat non-standard typing rules, whose meta-theory has to be redone from start, but
also has proved hard to formalize, often requiring complex syntactic techniques or semantic
objects.

A consolidation effort This thesis comes after many other works that aimed at formal-
izing and improving ML modules. We were less interested in proposing new features than
in adapting existing approaches and applying them to real-world languages, with a special
attention to backwards compatibility. Our goal was to try to find the “expressivity closure” of
existing features, in order to have a language as regular and predictable as possible. We also
focused on practical aspects and usability, in order to have more realistic formalization, at
the price of concision.

1.1 Thesis overview

This thesis is organized as follows. In Chapter 2, we explore the main topics and features
of modularity à la ML, with a focus on abstraction. We present informally the features and

20 CHAPTER 1. INTRODUCTION

some of the associated challenges to support them. In Chapter 3, we present the OCaml like
language that we study in the rest of this thesis – called the source language. We give its
grammar, its semantics and discuss syntactical invariants and technical details. In Chapter 4,
we introduce Mω, a type system built on the prolific line of works that approached ML
modules by translation of signatures to Fω, the higher-order polymorphic lambda calculus.
We present the typing rules and its proof of soundness, along with an algorithm to translate
Mω signatures back into the source syntax (when possible). In Chapter 5, we introduce
ZipML, a second type system that follows a syntactic, path-based approach, built around the
technical innovation of zipper signatures. We present its typing system, proof of soundness
by elaboration into Mω, and an algorithm for zipper simplification. In Chapter 6, we discuss
other features left behind in our model, to give a complete and comprehensive overview of the
whole research space of ML modules beyond the treatment of abstraction. In Chapter 7, we
discuss the difference between the two systems, as well as future works and perspectives.

1.2 Contributions

The work presented here led to the following main contributions:

• The definition of an OCaml-like module language with both applicative and generative
functors, and a treatment of module level aliases with transparent signatures.

• Mω, a type-system for this language that represents abstract types via Fω1 quantified
variables. Mω follows a long line of works that approached ML modules inference and
soundness by elaboration in Fω.

• The introduction of transparent existential types in Fω, a weak form of existential types
that can be lifted through arrow types and universal quantifiers. Transparent existentials
allow for a simpler treatment of sealing inside applicative functors when elaborating
modules into Fω.

• An anchoring algorithm that translates Mω-signatures back into a path-based source
syntax with a principled, first-order approach to type-errors caused by signature avoid-
ance.

• ZipML, another type system for the same language but that uses path-based syntactic
signatures internally. ZipML is proven sound by elaboration into Mω.

• The introduction of zipper signatures as a syntactic and practical way to capture an
enclosing context of a signature and to delay or avoid the signature avoidance problem.

• A formal treatment of user-written type and module type definition that are kept during
inference and in inferred signatures.

• A systematic delayed treatment of strengthening that relies on transparent signatures
and that prevents useless inlining and rewriting of signatures.

1.3 Research Output

Two conference articles were integrated in this thesis:

• Fulfilling OCaml Modules with Transparency,
Clément Blaudeau, Didier Rémy and Gabriel Radanne,
Proceedings of the ACM on Programming Languages, Volume 8, Issue OOPSLA1, 2023.

1The higher-order polymorphic lambda calculus.

1.3. RESEARCH OUTPUT 21

• Avoiding signature avoidance in ML with zippers,
Clément Blaudeau, Didier Rémy and Gabriel Radanne,
Proceedings of the ACM on Programming Languages, Volume 9, Issue POPL, 2025.

The OOPSLA paper presents Mω and roughly corresponds to the Chapter 4. The POPL
paper covers ZipML and roughly corresponds to Chapter 5. This thesis contains text that is
borrowed from those articles that I co-authored with my two advisors. Apart from Section 2.1
and Section 2.3 which are partially rewritten from the introduction of those articles, the
introduction, the rest of Chapter 2 and the Chapter 7 are original material. The beginning of
this chapter was inspired by the content of the Principle of Computer Systems course at Epfl.

The work of this thesis also led to the discovery of actual issues in the OCaml imple-
mentation, of various severity: OCaml#10491 (incorrect abstraction of module type fields),
OCaml#11441 (incorrect aliasing between to a functor parameter), OCaml#11442 (er-
ror in subtyping between invalid signatures), OCaml#11443 (silent rewrite of type infor-
mation by the typechecker), OCaml#12204 (problematic interaction between strengthen-
ing and abstract module types), OCaml#13172 (cyclic definitions in recursive signatures),
OCaml#13173 (generativity of module identities inside applicative functors).

https://github.com/ocaml/ocaml/issues/10491
https://github.com/ocaml/ocaml/issues/11441
https://github.com/ocaml/ocaml/issues/11442
https://github.com/ocaml/ocaml/issues/11443
https://github.com/ocaml/ocaml/issues/12204
https://github.com/ocaml/ocaml/issues/13172
https://github.com/ocaml/ocaml/issues/13173

Chapter 2

Features and challenges of a
modern module system

In this chapter, we introduce the design space of ML-modules informally. We present the key
features and the strength and weaknesses of modularity à la ML. While the type theory is
developed more thoroughly in Chapter 4 and Chapter 5, we gathered the key design insights
and present them here. This chapter serves both as a thorough introduction of the ML features
that we will formally develop. Combined with Chapter 6, it gives a complete overview of the
research space as well as a plan for the future of ML modules.

Features Throughout the chapter, we present both language mechanisms, language proper-
ties and language constructs – we refer to all three as features. In each section, we summarize
the features using the following marks: C for language constructs, M for mechanisms that
span over several constructs, and P for properties of the language. As we do both an overview
of existing features and a wish-list of what would constitute a fully-accomplished ML-module
system, we use symbols to indicate the status of each feature:

 represents largely supported and well understood features
 represents partially supported features, for which the theoretical background might be

missing or the implementation incomplete
+ represents new features that are not supported in current implementations, but for

which we advocate
Unless stated otherwise, the status symbol applies to OCaml, but comparisons with SML,
Moscow ML, or experimental languages such as 1ML are made.

Code inserts We display code inserts with the following convention:

1 This is an OCaml (or OCaml-like) code insert
1 This is the result of typechecking when it succeeds
1 This is an error that occurred during typechecking

Overview After presenting the basic building blocks in Section 2.1, we focus on the key
mechanism of type abstraction.

In Section 2.2, we explore the interaction between abstraction and functors. It leads to
the distinction between generativity and applicativity, and the module equivalence problem.
We discuss an extension of the syntactic criterion for applicativity via the new feature of
transparent signatures.

In Section 2.3, we focus on the interaction between abstraction and projection, which
poses the (infamous) signature avoidance problem. We present the main approaches to this
problem, as well as the solution followed by the current OCaml implementation. We discuss
the need for a type-preserving solution, and for a mechanism to delay avoidance.

In Section 2.4, we move from type-level abstraction to module-level abstraction. We
present the current state of the feature in OCaml, as well as a proposed restriction of simple
abstract signatures.

The other features (composition, first-class modules, etc.) are discussed in Chapter 6.

23

24CHAPTER 2. FEATURES AND CHALLENGES OF A MODERN MODULE SYSTEM

1 module Complex = struct
2 type t = float * float
3 let one = (1., 0.)
4 let zero = (0., 0.)
5 let add (a,b) (c,d) =
6 (a +. c, b +. d)
7 let mul (a,b) (c,d) =
8 (a*.c -. b*.d, b*.c +. a*.d)
9 let imaginary_part (a,_) = a

10 let complex_part (_,b) = b
11 end

12 module type Ring = sig
13 type t
14 val zero : t
15 val one : t
16 val add : t → t → t
17 val mul : t → t → t
18 end

19 module Polynomials = functor (R : Ring) →
20 struct
21 type t = R.t list
22 let zero = []
23 let one = [R.one]
24 let rec add p1 p2 = match p1,p2 with
25 | x1::p1, x2::p2 →
26 (R.add x1 x2)::(add p1 p2)
27 | [], _ → p2
28 | _ , [] → p1
29 let rec mul p1 p2 = match p1 with
30 | [] → []
31 | x1::p1 →
32 add (List.map (R.mul x1) p2)
33 (mul p1 (R.zero::p2))
34 end

35 module CX = Polynomials(Complex)
36 module CXAbs = (CX : Ring)

Figure 1: Basic modularity example (in OCaml). The breaks indicate that the code can be
in a separate file (even though we use continuous line numbers)

2.1 Basic modularity

In this section we give an introduction to ML modules. We start with an example and then
detail the main building blocks.

Example

Let us comment the example of Figure 1. We want to define a library for handling complex
numbers. This library will have some internal representation of complex numbers, and provide
the basic functionality (addition, multiplication, etc.). At Line 1, we define a module Complex
by creating a new structure to gather the internals of the library. Structures do not have
to correspond to files: we can create local modules or put several modules in the same file.
Inside the structure, we define a new type field type t = float * float (Line 2) to represent
complex numbers as pairs of floating point numbers. Then, we define values and functions
to handle those numbers (note that OCaml uses +. for the addition of floats, and *. for the
multiplication). Later in the program, users of the module can access the content of Complex
via a dot projection, as in:

1 let c = Complex.add Complex.zero Complex.one

Now, we want to build another library for polynomial. In the end, we want to use it for
complex numbers, but it is not specific to them. To increase code re-usability and modularity,
we want to make a library for polynomials given any module that provides a minimal set
of values and functions. To do that, we first define the interface of what we expect of such
module. We do so at Line 12, defining the Ring module type (not module). Ring defines a
signature that contains a list of type and value declarations, that places requirements on the
types of fields. We leave the type binding (that decides the internal representation of the
elements of the ring) abstract at Line 13.

We now want to use this interface for our polynomial library. We define a new mod-
ule Polynomials at Line 19, that, unlike Complex is not a structure but a functor : a function

2.1. BASIC MODULARITY 25

from modules to modules. It takes as input R, a module parameter of signature Ring and
produces a structure. We call the signature of the parameter (here, Ring) the domain of
the functor, while the produced structure is the body of the functor. The implementation of
polynomials uses lists of coefficients for its internal representation, as defined at Line 211. As
we have left the type field in Ring abstract (Line 13), this definition is polymorphic and works
whatever the actual implementation of R.t.

After this hard work, we can finally obtain our library of polynomials over complex num-
bers CX by creating a new module that is the result of a functor application at Line 35. But
we might not be completely satisfied: the internal details of our library are exposed, i.e., any
user of CX can see that we represent a polynomial as a (float * float) list. This reduces
modularity and safety: later on, one might incorrectly use a list of pairs of floats as a complex
polynomial, or one might write code that accidentally depend on this representation (using
list operations). To prevent those, we reuse the Ring library, but this time to do an ascrip-
tion: at Line 36, we create a new module CXAbs by copying CX, but we force its signature to
be exactly Ring. Doing so, we abstract the type equality, making CXAbs.t no longer equal
to (float*float) list, but abstract, only equal to itself. Users of CXAbs will only be able to
handle objects of type CXAbs.t via the functions provided by CXAbs.

The constructs presented here can be combined in many ways to create more and more
complex structures. Just to give an example, we can obtain polynomials in two variables by
making polynomials of polynomials. We can easily create a module that calls Polynomials
twice, by doing:

1 module PolynomialsXY = functor (R : Ring) → Polynomials(Polynomials(R))

We can even be even more abstract by going higher order, and write a functor that takes any
polynomial functor and calls it twice:

1 module HOPolynomialsXY = functor (P : Ring → Ring) (R:Ring) → P(P(R))

In the rest of this section, we detail the building blocks used in this example.

Concepts

Module layer The key design choice of ML is that modularity is provided by a separate
language layer, the module layer, that uses different keywords and mechanisms from the rest
of the language, called the core-language. As a consequence, both languages can be designed
with different trade-offs, adapted for programming in the small and in the large. For instance,
in ML, the core-language uses a first-order type language, but is equipped with a powerful
inference engine that makes it mostly implicitly typed (and yet predictable). By contrast, the
module-layer has a powerful type language, but requires more explicit type annotations.

Structures The basic building block of ML modules is the structure, obtained with the
keywords struct end. Definitions inside a structure are called bindings. Inside a structure,
the user can bind values and define new types, each associated with a name. Bindings have
an open scope: the name they define is accessible for the rest of the enclosing structure. This
is especially visible for value bindings: they are made with the let keyword, but there is no
corresponding in part that would limit their scope.

1 let x = 22 (* open scope, "x" is available *)
2 let y = 20 in x+y (* closed scope, "y" is available only in a sub-expression*)

1Type operators are written with a reverse order of applications: int list is a list of integers.

26CHAPTER 2. FEATURES AND CHALLENGES OF A MODERN MODULE SYSTEM

Type definitions Type definitions are made with the type keyword. OCaml offers a
rich variety of type definitions: algebraic data-types (ADT), generalized algebraic data-types
(GADTs) [Garrigue and Rémy, 2012], objects [Rémy and Vouillon, 1997], polymorphic vari-
ants, extensible types, parametric types, type annotations (variance, unboxing, etc.), private
types, type constraints, etc. New proposals are often made to extend the type definition
mechanism: the latest being (at the time of writing) modal memory management [Lorenzen
et al., 2024]. The type definition mechanism sits a bit in-between the core and module layers:
it is a construct of the module language but is technically supported by the core. The module
language is more or less agnostic of the structure of type declarations.

Manifest types OCaml also supports manifest types [Leroy, 1994]: as done in the mod-
ule Complex, one can give a name to any already-existing type expression (here, float*float).
In practice, this feature is essential, as it allows to use locally meaningful names for type
expressions. It also acts as a light form of abstraction.

Signatures The type of a module – obtained by inference or written by the user – is called
a signature. The signatures of structures are called structural signatures and use the delim-
iters sig end. Definitions inside a structural signature are called declarations2. Signatures
can be named via a module-type binding. This is especially useful, as signature can grow very
large and clutter the output when no names are used. While the nomenclature in the litera-
ture can vary, in this thesis, we refer to the type of modules as signatures, while module-types
only refer to the binding/declaration.

Type Abstraction The killer feature of ML modules, that is also the crux from a formal-
ization point of view is type abstraction. Type declarations can be left abstract. This allows
the definition of new types that are only compatible with themselves. Abstract types pro-
vide a powerful and flexible mechanism for encapsulation, that is the heart of the discussion
throughout the rest of this chapter.

Controlling the outside view of a module Signatures can be used to control interactions
between modules in two ways. First, the outside view of a module can be restricted to protect
internal invariants by an explicit ascription to a given module type. It requires a subtyping
check between the inferred signature of the module expression (here, the inferred signature
of Complex) and the user-provided one (here Ring). This check is structural : there is no
need to mention the Ring signature at the definition point of Complex, it is sufficient to have
the appropriate fields. By contrast, with nominal subtyping, the subtyping relations must be
made explicit up front, which is less flexible and imposes an order on the definitions of module
and interfaces.

Ascriptions can be used to (1) hide fields (making them inaccessible from the outside),
(2) reorder fields (regardless of the original order of definitions), and (3) abstract type com-
ponents, which hides the underlying implementation while keeping the name visible. The
basic form of ascription is also called opaque ascription—we will later encounter transparent
ascription in Section 2.2.4. Here, CXAbs.t is an available type, but its implementation as a
list of pairs of floats is hidden.

Controlling dependencies of a module Signatures can also be used to restrict how a
given module depends on (i.e., uses) other modules. This is achieved by turning the module
into a functor. Here, Polynomials is a functor that can take any implementation R satisfying

2The terminology is not fully stabilized in the literature regarding the distinction between bindings for fields
of structures and declarations for fields of structural signatures. In some works like [Rossberg and Dreyer,
2013], bindings are called definitions, and declarations are called specifications.

2.1. BASIC MODULARITY 27

the Ring interface and that returns an implementation of the ring of polynomials over R. The
body of the functor is polymorphic with respect to the abstract type fields of its argument,
and thus, does not depend on their actual implementations. Functors can then be called and
composed: Polynomials can be applied to modules satisfying Ring such as Complex but also the
output of Polynomials itself. There is a subtyping check at functor application, which induces
a run-time coercion.

Hierarchy Modules can be nested inside other modules as sub-modules. Correspondingly,
submodules can be extracted by projection: M.X extracts the submodule X from M.

Higher order functors As expected by users of functional languages, functors can be
higher order : they can take other functors as arguments. Historically, higher order-functors
have been a technical challenge, especially before the introduction of applicative functors
(see [Shan, 2004; Dreyer et al., 2003; Leroy, 1995; Biswas, 1995; Harper and Lillibridge, 1994;
Harper et al., 1989], among others).

Overall, we have the following basic features

 M Basic modularity: structures, signatures, value bindings/declarations, submodules,
type and module-type bindings/declarations.

 C Type manifests: creating new names for already-existing types
 M Abstract types
 M Interface control: ascription (interface of exports) and functors (interface of im-

ports)
 M Higher-order functors

Regularity and robustness A good property for languages, especially in the context of
modularity, is its regularity : the user should be able to arbitrarily nest and use the features,
without restrictions such as being at top-level. It is partially the case in OCaml: submodules
can be arbitrarily nested, ascription can be used at any point, functors applications can be
written with an anonymous functor and anonymous argument, functors can be higher-order.
However, other constructs, such as projections, are syntactically restricted to module identi-
fiers (we expand on the technical reasons behind this choice in Section 2.3). This is detrimental
for the usability of the system, as users might run into hard-to-predict unsupported edge-cases
in more advanced applications.

Another important property is robustness: typechecking should be predictable and se-
mantically insignificant changes should not break it. OCaml modules suffer from a lack of
robustness when using the advanced features of the language. As an example, they support
neither let-binding nor inlining of definitions! Let-binding can break the syntactic criterion of
applicativity, which we discuss in Section 2.2.3—it can be fixed with transparent signatures.
Inlining the definition of a submodule (or let-inlining) can trigger signature avoidance, as
discussed in Section 2.3. This breaks the subject reduction property of the intuitive call-by-
value semantics. While we do not necessarily expect the language to have full-blown subject
reduction, the semantic reduction that can be expressed in the language should not break
type-checking.

 P Robustness the typechecking should support semantically insignificant changes.

Summary At a high-level, ML modules can be understood as a small separate calculus built
on top of a source language, with standard features re-branded with ML nomenclature. If we
forget about typing, structures are basically records: bindings are record-field expressions and

28CHAPTER 2. FEATURES AND CHALLENGES OF A MODERN MODULE SYSTEM

declarations are record-field types. Projection is just record access. Ascriptions are explicit
type coercions, and functors are just functions. However, in addition, signatures contain
abstract types. The crux of ML modules is the interaction between abstraction and other
features, which we discuss in the following sections.

Other introductions to ML-modularity can be found in Dreyer et al. [2005]; Russo [2004];
Leroy [2000] (among others) or in [Pierce, 2004, §8].

2.2 Functors and abstraction

Functors are the key tool to parameterize a module with another module in a polymorphic
way. The module parameter can be chosen at another point than the definition of the functor,
at the functor call site. However, this seemingly simple feature interacts with abstraction in
subtle ways.

2.2.1 Applicative and Generative Functors

Both modules and functors can be used to either structure the code base or to build reusable
components. In the latter case, several instances of a functor application may be available in
the context when combining different pieces of code. This is typically the case for modules
providing common data-structures such as lists, hash-tables, sets, etc. When such functor
produces abstract types, a question arises: should every instance of the same application
produce compatible abstract types, i.e., types considered equal by the typechecker? This
question leads to the distinction between applicative and generative functors, which have
different semantics and correspond to different use cases. Both are supported by OCaml
and illustrated in Figure 2. If two instances have equal abstract types, they are effectively
compatible and the functions and values from each module can be used together. We say that
two instances are incompatible when they have different abstract types.

Generative functors Applying a generative functor twice generates two incompatible
modules, with incompatible abstract types. The body of such functor might be stateful,
emits effects, or dynamically choose the implementations of its abstract types (using first-
class modules). Generativity can also be used by programmers as a strong abstraction barrier
to force incompatibility between otherwise pure and compatible data-structures that represent
different objects in the program. OCaml syntactically distinguishes generative functors from
applicative ones by requiring the last argument to be a special unit argument “()”. Therefore,
generative and applicative functors are syntactically distinguished: the unit argument () is
not the same as an empty structure. We find this effect-suggesting syntax of taking a unit
argument fitting, as calling a generative functor can indeed produce effects.

Applicative functors Conversely, applying an applicative functor twice with the same
argument produces compatible modules, with the same abstract types. The body of such a
functor must be pure and have a static implementation of its abstract types. In OCaml, it is
left to the user’s responsibility to mark impure functors as generative. Indeed, the typechecker
does not track effects, but only prevents unpacking of first-class modules and calling generative
functors inside the body of applicative ones. Applicativity acts as a weaker abstraction barrier,
making several instances of the same structure compatible. This is especially useful to provide
generic functionalities (such as hash-maps3, sets, lists, etc.) that may appear in several places
and yet be compatible. Applicative functors are the default in OCaml.

3Hashtbl.Make is actually pure, as it does not produce a new hash table itself, even though it contains
impure functions.

2.2. FUNCTORS AND ABSTRACTION 29

1 module Tokens () = (struct
2 type t = int
3 let x = ref 0
4 let fresh () = let n = !x in x := n + 1 ; n
5 let eq x y = (x = y)
6 end : sig
7 type t
8 val fresh : unit → t
9 val eq : t → t → bool

10 end)
11 module PublicTokens = Tokens()
12 module PrivateTokens = Tokens()
13 (** PublicTokens.t =/= PrivateTokens.t *)

(a) A generative functor — OCaml functors are made generative by having () as their last parameter.
Here, each application of the Tokens functor produces a module with its own internal state that
generates fresh tokens independently.

1 module OrderedSet (E:Ordered) = (struct
2 type t = E.t list
3 let empty : t = []
4 let rec add x s = match s with
5 | [] → [x]
6 | y::s → if (E.lt x y) then (x::y::s)
7 else (y::(add y s))
8 end : sig
9 type t

10 val empty : t
11 val add : E.t → t → t
12 end)
13 module S1 = OrderedSet(Integers)
14 module S2 = OrderedSet(Integers)
15 (** S1.t === S2.t *)

(b) An applicative functor — Functors are applicative by default in OCaml. Here, OrderedSets(E)
is a module implementing (ordered) sets of elements of type E.t. Applicative functors can be used in
paths directly, leading to S1.t = OrderedSets(Integer).t.

Figure 2: Examples of generative and applicative functors.

30CHAPTER 2. FEATURES AND CHALLENGES OF A MODERN MODULE SYSTEM

1 module S1 = Set.Make(struct type t = int let lt = (>) end)
2 module S2 = Set.Make(struct type t = int let lt = (<) end)
3

4 let s = S1.(empty |> add 1 |> add 3 |> add 2) (* [1,2,3] *)
5 let s’ = S2.add 2 s1 (* [2,1,2,3] *)
6 let test = S1.mem 2 s’ (* false *)

Figure 3: A simple example of a breach of abstraction safety. With the static equivalence
criterion, this code type-checks but misbehaves. Specifically, the implementation of sets as
lists assumes that the list is ordered with respect to the comparison function. However, S1
and S2 do not have the same comparison function, but still have compatible abstract types.

One could think that applicative functors are not necessary : the programmer could always
have factorized in advance the functor applications that happen to be duplicated and only
use generative functors. Yet, applicative functors allows for clean and concise patterns which
prevents program-wide changes (even deep inside libraries). Since they where introduced
by Leroy [1995], they became an appreciated feature of OCaml, contributing to the success
of the language. Generative functors, the default in SML, were added to OCaml only later
on (OCaml 4.02).

 C Generative functors: necessary for effectful modules or dynamic choice of imple-
mentation (using first-class modules, see Section 6.2.1)

 C Applicative functors: crucial for sharing of pure functors without a priori factor-
ization of similar applications

+ M Effect tracking at the core level: applicative functors bodies should be pure. As
of now, it is left to the user responsibility, whereas a type-system check of purity would
provide a much stronger guarantee.

2.2.2 Abstraction Safety and Granularity of Applicativity

A key design point is the granularity of applicative functors: under what criterion should
two applications of a functor produce compatible modules? This problem was coined the
module equivalence problem by Dreyer [2007a]. We say that two modules are equivalent when
applying the same functor to both yields compatible abstract types.

An option, used in Moscow ML, is to consider modules to be equivalent when they
have the same type fields (same names and same definitions4). This criterion is called static
equivalence [Shao, 1999; Russo, 2000; Dreyer et al., 2003]. It is type-safe: in the absence of
first-class modules, which are forbidden in applicative functors for that very reason, the actual
implementation of the abstract types produced by the functor can only depend statically
on its parameters, thus only on its statically known type fields. Therefore, requiring static
equivalence is sufficient to ensure that the abstract types produced by the functor are the
same.

However, the static equivalence criterion can make two functor applications compatible
while they actually have different internal invariants. In the example of Figure 3, the lists
used to represent sets are ordered with respect to the comparison function of the argument
of the functor. Therefore, a typechecker implementing the static equivalence criterion would
allow a user to mix sets ordered with different ordering functions, which would produce wrong
results – but not crash.

4This relies on some equality of types. For instance, it could be the cloture of syntactic equality and
applicativity – which might be problematic for recursive signatures with applicative functors.

2.2. FUNCTORS AND ABSTRACTION 31

Yet, developers often expect a stronger property called abstraction safety : abstract types
should protect arbitrary local invariants that may also depend on values. In the example
of Figure 3, applications of OrderedSets should produce compatible abstract types only when
both the type E.t and the values, in particular the comparison function E.lt, are the same.
Crucially, abstraction can protect invariants that cannot be expressed in the type-language.
This is actually a key point when comparing the module system of OCaml and that of
languages with very expressive type-systems, especially Gallina (the language of Coq) which
has an ML like module system. In the latter, all the properties of objects can be expressed
directly as lemmas (or using dependent types) and preserved by the type-system. Abstraction
only serves to limit the reach of internal details.

To preserve abstraction safety, we need dynamic equivalence, i.e., the runtime equality of
values. Unfortunately, it is undecidable in general. Besides, tracking even an approximation
of the equality of value fields would be too fine-grained and cumbersome, as modules may
have numerous value fields. To enforce abstraction safety while remaining practical, OCaml
follows a coarse-grain approach: tracking equalities only at the module level (not at the value
level). This was originally introduced as a syntactic criterion by Leroy [1995]: two functor
applications produce the same abstract types when they are syntactically identical. The
syntactic criterion therefore acts as a gross approximation of dynamic equivalence, preserving
abstraction safety.

 P Abstraction safety: type abstraction should protect arbitrary invariants. While
easy to verify for the rest of the language, applicative functors need a special treatment:
their module equivalence criterion should be a subset of dynamic equivalence.

As a summary, applicativity of functors relies on a criterion for module equivalence. We
distinguish two notions of equivalence:

• Static equivalence: the two modules have the same type fields (for some notion of type
equality). Using static equivalence for applicativity yields type-level applicativity.

• Dynamic equivalence: the two modules have the values at runtime. A subset of dynamic
equivalence can be tracked statically by the type-system, either (1) by tracking equality
between value fields, yielding value-level applicativity, or (2) by tracking equality between
modules, yielding module-level applicativity.

2.2.3 Module level equalities and aliasing

The syntactic criterion is however somewhat fragile, as, for example, it does not support
naming sub-expressions. In this subsection, we present the OCaml extension of module
aliases that extends this criterion in a somewhat restricted way.

Two paths with functor applications are considered equal when they are syntactically
equal:

1 module F (_:sig end) = struct end
2 module G (_:sig end) = struct type t end
3 module X = struct end
4 let f : G(F(X)).t → G(F(X)).t = fun x → x (* typechecks *)

Unfortunately, naming a sub-expression breaks the syntactic equality:

1 module FX = F(X)
1 let f’: G(FX).t → G(F(X)).t = fun x → x
1 Error: This expression has type G(FX).t but an expression was expected of type
2 G(F(X)).t

32CHAPTER 2. FEATURES AND CHALLENGES OF A MODERN MODULE SYSTEM

Here, the type of module FX should manifest its module-level equality with F(X). Interestingly,
the OCaml feature of module aliases partially covers this need, even though it was historically
introduced for unrelated reasons.

Module aliases To allow for a better management of name-spaces, type-level module aliases
were added to OCaml: the signature language has been extended with the alias declaration
construct moduleX = P to express that a module is a statically known alias of the module at
the path P . The main motivation behind this extension was to provide a mechanism to give
short names to modules without actually duplicating the module at runtime. It is especially
useful for accessing the standard library:

1 module M = struct
2 module A = StdLib.Array (* example of short name with module aliases *)
3 (* ... *)
4 end

Internally, the compiler maintains a flag to decide if the submodule can be removed from the
structure at runtime (absent alias, also called static alias) or should be kept (present alias,
also called dynamic alias). As it was designed as a namespace feature, it made sense to try to
prevent having an actual field for the aliased module if not necessary. However, it effectively
merged in the same syntax two very different features, and the user cannot easily control if
the aliased module is present or absent at runtime.

This opened the door to module-level equalities, similar to the abandoned structure sharing
mechanism of SML’90. In particular, the syntactic criterion was extended to include module
aliases (both static and dynamic), making the following code typecheck:

1 module F (_:sig end) = struct type t end
2 module X = struct end
3 module X’ = X
4 let f : F(X).t → F(X’).t = fun x → x

Restrictions However, the motivating example at the beginning of this section still does
not typecheck in OCaml: the aliasing feature has been designed for static aliases and is
therefore quite limited. In practice, for a declaration module M = P, the path P has the following
restrictions (extract of the OCaml documentation [Leroy et al., 2024])5:

1. it should be of the form M0.M1...Mn (i.e. without functor applications);
2. inside the body of a functor, M0 should not be one of the functor parameters;
3. inside a recursive module definition, M0 should not be one of the recursively defined

modules.
The restrictions 1 and 3 were put in place to ensure that the aliased module is already
dynamically present, to make the static redirection meaningful. But these two restrictions
are not necessary for dynamic aliases! (Restriction 2 is discussed in the next subsection)

Overall, we advocate for a separation of the two mechanisms for aliasing. The simpler
static aliasing is well suited to remain a declaration made inside an enclosing module, and
the aliased module cannot contain functor application, other recursive modules, or functor
parameters: it should have a different syntax than dynamic aliases (discussed in the next
subsection).

 C Static aliases: to manage name-spaces (provide short names for modules), the user
should be able to define static aliases to other, already defined, modules. Static aliases
do not induce a copy of the aliased module, they are removed at runtime.

In the rest of this thesis, “aliases” refer to dynamic aliases by default.
5https://ocaml.org/manual/5.2/modulealias.html

https://ocaml.org/manual/5.2/modulealias.html

2.2. FUNCTORS AND ABSTRACTION 33

2.2.4 Aliases and transparent ascription

In this subsection, we present a technical issue with aliases, solved by the introduction of a new
feature of transparent signatures that provides a robust extension of the syntactic criterion of
applicativity.

Unlike static aliases, dynamic aliases don’t have to be restricted to paths without applica-
tions and could contain other recursive modules. Besides, the aliasing does not have to be at
the declaration level, but could very well be at the signature level. However, paths containing
functor parameters are an issue6. As an example, let us consider the following code:

1 module X : T = (* ... *)
2 module F (Y:S) = Y (* reexport *)
3 module X’ = F(X)

The module X’ cannot be given the expected alias signature:

1 module X’ : (= X)

which contradicts the substitution-based intuition. Indeed, if the type system were to maintain
module aliases through functor calls, it would impose strong constraints on the compilation
of structures and functors that would drastically affect the performance trade-offs of modules.

To see why, let us consider the compilation of the body of the functor F. To enable
separate compilation, it should not depend on the rest of the code, but only on the parameter
signature S and the code of the body. In order for the body of the functor to be an alias of the
argument, it should contain all of the fields of its parameter. However, as we allow implicit
ascription at functor call, the actual argument (here X) might have strictly more fields than
the ones indicated in the signature S, and in an order that might be different. Therefore, the
static view of Y is a (potentially) strict supertype of the dynamic structure given at functor
application. Yet, for the compilation of the body, we rely on the static view to compile accesses
inside Y. The possible mismatch between the static and dynamic view can be resolved in two
ways:

• We can force the static and dynamic view to match by removing the implicit ascription
at functor call. In our example, it would require to rewrite the line 3 as:

1 module X0 = (X:S)
2 module X’ = F(X0)
1 module X0 : S
2 module X’ : (= X0)

Besides the fact that would greatly limit the usability of functors, it would still not give
the right answer: X’ would be an alias of X0, not X.

• Or, we can choose a compilation scheme where the mismatch is not an issue: where the
actual dynamic object can have any subtype of the static view. That is, a compilation
scheme with code-free subtyping. Typically, using dictionaries with a dynamic dispatch
through an access-table provides a code-free subtyping representation of structures, at
the cost of slower accesses (due to the indirection). However, in all ML-module systems,
including SML and OCaml, structures are compiled via static dispatch: accesses inside
a structure are made with fixed offsets to be fast. In such setting, subtyping is not code
free, and explicit coercions are inserted at functor calls, which break module aliases.

Therefore, the type system does not follow the naive substitution semantics for aliases inside
functors, but instead uses a set of syntactically-based restrictions to prevent them in functor

6This issue stalled the pull request OCaml#10435 that aimed at extending the alias mechanism

https://github.com/ocaml/ocaml/pull/10435

34CHAPTER 2. FEATURES AND CHALLENGES OF A MODERN MODULE SYSTEM

signatures. Those restrictions are not stable under substitution and can be bypassed in some
edge-cases7.

 M Static dispatch: “modules are often accessed but rarely reordered ”, the type system
should be compatible with a static dispatch compilation scheme that favor fast access
over code-free subtyping.

Transparent ascription to the rescue Interestingly, transparent ascription, originally
introduced as a module expression written (M : S) in SML, helps lifting this restriction. It
restricts the outside view of a module M to the fields present in the signature S while preserving
all type equalities. However, this feature does not increase expressiveness in SML as a similar
result could be obtained via a usual (opaque) ascription with a signature where all type
equalities have been made explicit. In OCaml however, it would increase the sharing with
applicative functors. A proposal for OCaml8 is to add transparent ascription as an extension
not only of the module language, but also of the signature language, writing (= P < S) for
the signature of a module that is an alias of P but restricted to the fields of S, which we call a
transparent signature. A module with such a signature has a module-level equality with P and
the content S. We say that it shares the same identity as P.

Transparent signatures provide a generalization of aliasing, storing both the aliasing in-
formation and the actual signature (hence, the memory representation). The transparent
ascription expression à la SML (P : S), is then just syntactic sugar for an opaque ascription
with a transparent signature (P :> (= P < S)) (in SML syntax).

Thanks to transparent signatures, aliasing information can be preserved through the im-
plicit ascription at functor calls. As OCaml features applicative functors (unlike SML), this
would increase the expressiveness of the signature language. Besides, concrete signatures are
compatible with static dispatch and copying at function calls allows deletion and reordering
of fields while preserving type equalities. The motivating example of the beginning of this
section would give:

1 module X : T = (* ... *)
2 module F (Y:S) = Y (* re-export *)
3 module X’ = F(X)
1 module X : T
2 module F : (Y:S) → (=Y<S)
3 module X’ : (= X < S)

Another, more realistic example of code pattern where transparent signatures are necessary is
given in Figure 4. This pattern arises when combining a functor (Make3D) that re-exports its
argument (K) with an applicative functor called twice (Set), once on the argument and once
on the re-exported argument V.Scalar so that the modules resulting from both applications
may interact. Here, the fixed interface VectorSpace could not be functorized to make explicit
the dependency over the underlying field, as not all vector spaces are functors over a field.
Besides, type-level sharing is not sufficient to obtain the right type equalities when calling
the Set functor.

+ C Transparent signatures (dynamic aliases): to extend the syntactic criterion
of applicativity in a manner that composes well with functors, we propose to store
both the module level equality and the dynamic signature using transparent signatures.

7See the following issues: OCaml#7818, OCaml#2051, OCaml#10435, OCaml#10612 and
OCaml#11441.

8OCaml#10612. Transparent ascription is written (P :> S) in OCaml#10612, the opposite of the SML
convention.

https://github.com/ocaml/ocaml/issues/7818
https://github.com/ocaml/ocaml/pull/2051
https://github.com/ocaml/ocaml/pull/10435
https://github.com/ocaml/ocaml/pull/10612
https://github.com/ocaml/ocaml/issues/11441
https://github.com/ocaml/ocaml/pull/10612
https://github.com/ocaml/ocaml/pull/10612

2.2. FUNCTORS AND ABSTRACTION 35

1 (* Interface definitions *)
2 module type Field = sig ... end
3

4 module type VectorSpace = sig
5 module Scalar : Field
6 ... (** more fields *)
7 end
8

9 (* Basic data-structure *)
10 module Set(Y: sig
11 type t
12 val compare : t → t → int
13 end) = struct ... end
14

15 (* Extension of a vector space
16 with additional features *)
17 module LinAlgebra(V:VectorSpace) =
18 struct
19 ...
20 module SSet = Set(V.Scalar)
21 ...
22 end

23 (* Special case of vector space
24 built directly from a field *)
25 module Make3D(K:Field) = (struct
26 module Scalar = K
27 ... (** built from K *)
28 end : sig
29 module Scalar : (= K < Field) ...
30 end)

31 (* Implementation of real numbers R *)
32 module Reals = ...
33

34 (* Vector space R3 with extensions *)
35 module Space3D =
36 LinAlgebra(Make3D(Reals))
37

38 (* Are sets of reals the same
39 as sets of scalars of R3 ? *)
40 let id : Space3D.SSet.t → Set(Reals).t
41 = fun x → x

Figure 4: An example of code pattern where transparent signatures are necessary. On
the left-hand side, VectorSpace defines an interface for vector spaces which contains a sub-
module Scalar for the field of scalar numbers. The functor LinAlgebra (line 18) uses a vector
space to define linear algebra operations, one of them using sets of scalar numbers. At some
other point in the development (line 25), 3D vector spaces are built directly from any field K
via the functor Make3D. Its signature contains a transparent signature on its parameter K.
Finally, on line 36, the module Space3D implements linear algebra for the vector space R3.
We want the inner sets Space3D.SSet.t, and Set(Reals).t to be compatible. This requires the
aliasing information to be kept between the parameter and the body of the functor Make3D.
Currently, OCaml fails to share and identify the types Space3D.SSet.t and Set(Reals).t.

36CHAPTER 2. FEATURES AND CHALLENGES OF A MODERN MODULE SYSTEM

This would lead to a much more robust notion of module equivalence that extends the
syntactic criterion.

 M Robust let-binding with submodules: using transparent signatures, the user
should always be able to bind module expressions as submodules without breaking
type-checking.

Transparent signatures can be seen as a special case of the more general module sharing
mechanism of F-ing (Rossberg et al. [2014]) like P: the transparent signature (= P < S)
could be obtained as (like (P : S)) (with a transparent ascription of P by S). This sharing
mechanism relies on a general notion of semantic paths that stand for any module expression
that does not introduce new abstract types whereas OCaml uses more restrictive syntactic
paths. Therefore, module sharing signatures with semantic paths could also play the role of
transparent signatures. However, we argue that semantic paths are too powerful for their own
good. By injecting arbitrary module expressions in signatures, it makes it hard for the user
to know if two modules are equivalent.

As transparent signatures enable more sharing of identities in signatures of inferred mod-
ules, aliasing becomes a good static approximation of that equivalence.

2.3 A Key Challenge: the Signature Avoidance Problem

In this section, we present the signature avoidance problem, a key issue of ML module systems
that comes from the interaction between abstraction and projection. In Section 2.3.1, we
introduce the signature avoidance problem through examples. In Section 2.3.2, we discuss
possible strategies to handle it. We give some considerations for the design of an algorithm
that can be used to solve the avoidance problem, which we call anchoring. In Section 2.3.3,
we propose a restriction of anchoring in the presence of applicative functors for improved
usability. We conclude with some practical aspects in Section 2.3.4.

2.3.1 Introduction to the avoidance problem

At its core, signature avoidance originates from the interaction of three mechanisms. First,
type abstraction creates new types that are only compatible with themselves (and their
aliases). Then, sharing abstract types between modules, which is essential for module in-
teractions, produces inter-module dependencies in signatures. Finally, projection (and other
mechanisms) allows the user to hide a type or module components, which can break such
dependencies: types can be removed from the scope while they are still being referenced.
Sometimes, no possible signature exists for a module in the source syntax; other times there
are several incomparable ones (no principal source signature). A detailed overview of the
avoidance problem can be found in [Crary, 2020].

In the literature, the nomenclature is not fully stabilized: sometimes the avoidance problem
refers to cases where no source signature exists, sometimes to the process of finding a signature
that avoids a certain type. In this thesis, we use signature avoidance or the signature avoidance
problem to refer to the challenge of finding a signature that avoids a certain type, if it exists.
The algorithm that actually finds such signature is called the anchoring algorithm.

We show here all language constructs that can hide components from the context and
therefore require to avoid them. The last two use features that are discussed later in the
thesis and can be skipped; we present them for completeness.

Anonymous projection The most general form is the anonymous projection (which is not
valid OCaml syntax):

1 module M = (struct
2 type t = A of int | B

2.3. A KEY CHALLENGE: THE SIGNATURE AVOIDANCE PROBLEM 37

3 module X = struct
4 let x = A(42)
5 end
6 end).X

The module M is built by projecting only the submodule X, which exposes dangling dependen-
cies on a type t that has become inexpressible. There is no way of writing a signature for M
that avoids t (unless x is also dropped):

1 sig x : ? end

OCaml disallows anonymous projections precisely to prevent this type of patterns.

Anonymous functor call However, OCaml does allows anonymous functor call, which
leads to similar situations:

1 module M =
2 (functor (Y:sig type t end) → struct
3 let x : Y.t list = []
4 end)(struct type t = A | B end)
1 Error: This functor has type functor (Y : T) → sig val x : Y.t list end
2 The parameter cannot be eliminated in the result type.
3 Please bind the argument to a module identifier.

Here, the algebraic datatype of the anonymous argument cannot be referred and is yet neces-
sary for the resulting signature: there is not signature avoiding this type. The error message
suggests a solution: naming the module argument to make its type components available for
the rest of the program.

Anonymous open OCaml also offers anonymous open [Li and Yallop, 2017], a feature that
is discussed in Section 6.1.1. An opened module must not appear in the resulting signature
(it would otherwise escape its scope):

1 module M = struct
2 open (struct type t end)
3 let x : t option = None
4 end
1 Error: The type t/4046 introduced by this open appears in the signature
2 Line 5, characters 6-7:
3 The value x has no valid type if t/4046 is hidden

There is no signature avoiding the type t.

Local module OCaml allows an interleaving of value and module definitions via local
modules, i.e., modules defined locally inside a value definition (see Section 6.2.1)

1 let f (x: int) =
2 let module X = (struct type t = A of int | B end) in
3 X.A(x)
1 Error: This expression has type X.t but an expression was expected of type ’a
2 The type constructor X.t would escape its scope

Overall, signature avoidance can appear as long as there are ways to hide abstract types
from the typing environment, creating dangling dependencies. There is therefore a mismatch,
illustrated in Figure 5, between the expressiveness of the module and signature languages:
the reachable space of possible module expressions is larger than the describable space of
signatures: some modules simply cannot be described by a signature.

38CHAPTER 2. FEATURES AND CHALLENGES OF A MODERN MODULE SYSTEM

Reachable space

Signature avoidance

Describable space

Incorrect avoidance

Over abstraction

Common use-cases

Figure 5: A representation of the mismatch between the reachable space of module expres-
sions (outer-most circle) and the describable space of signatures (inner ellipse). The common
use-cases of OCaml are mainly within the area where the typechecker behaves correctly. In
some cases, the current OCaml typechecker can lose type-equalities while still being in the
describable space. This may lead to (1) producing a signature where some type fields are un-
necessarily made abstract (over-abstraction) or (2) failing at inferring the signature (incorrect
avoidance).

2.3.2 Strategies

There are three main strategies to handle the avoidance problem:

1. Preventing the loss of abstract types. For instance, naming all module expressions make
all abstract types always accessible and the avoidance problem disappears. However, it
greatly limits the usability of the module calculus and prevents a fine-grained manage-
ment of types: it becomes impossible to hide intermediary module constructions without
explicit ascriptions.

2. Trying to rewrite the signature to avoid the out-of-scope types. This might require
deep rewrites inside the signature, to abstract type components, as done by Crary
[2020]. OCaml uses an incomplete (undocumented) heuristic that can lead to loss of
type-sharing : type equalities between in-scope types might be lost. We describe this
heuristic below.

3. Extend the signature syntax to account for the existence of out-of-scope types, as done
in SML’90 [Milner et al., 1997] and in [Dreyer et al., 2003; Russo, 2004, 1996; Rossberg
et al., 2014; Harper and Stone, 2000]. From a formalization point of view, the extension
of syntax forces a specification by elaboration, where signatures are translated in a more
expressive language, more or less distant from the source one.

The rewriting heuristic of OCaml When a signature mentions an out-of-scope type,
say t for instance, OCaml uses the following heuristic:

1. If the type appears in a type field of the form type u = t that is in a strictly positive
position, the field is transformed into an abstract type field type u

2. If the type appears in a module type field, the whole module type field is transformed
into an abstract module type, which is actually a bug9 .

3. If the type appears in any other position (value field, non-strictly positive type field,
etc), a type-error is produced.

9Researching this behavior led us to uncover this bug and open the issue OCaml#10491

https://github.com/ocaml/ocaml/issues/10491

2.3. A KEY CHALLENGE: THE SIGNATURE AVOIDANCE PROBLEM 39

Loss of type-sharing While simple, this heuristic has some surprising behavior. Let us
consider the following code:

1 module F = functor (Y:sig type t end) → struct type u = Y.t type v = Y.t end
2 module M = F(struct type t = A | B end)

Here, the signature of X mentions an out-of-scope type t that should be avoided. OCaml
make all type declarations that mention t abstract, giving the following signature 10:

1 module F : functor (Y:sig type t end) → sig type u = Y.t type v = Y.t end
2 module M : sig type u type v end (* OCaml *)

Here, there is a loss of type-sharing: the type u and v are no longer equal! It can lead to
unexpected errors later in the program:

1 let f : M.u → M.v = fun x → x
1 Error: This expression has type M.u but an expression was expected of type M.v

Yet, a better signature was possible if instead of abstracting all type declarations mentioning t,
the typechecker would recognize u as an available in scope alias that can be used to replace t:

1 module M : sig type u type v = u end

Inside the body of the functor, Y.t and u refer to the same type, and using one or the
other in the definition of v should not change the result. Yet, writing type v = u instead
of type v = Y.t would change the signature inferred by OCaml: the avoidance resolution
heuristic would not rewrite a declaration that does not use out-of-scope types. Overall,
the resolution mechanism is quite brittle: the typechecker can lose type equalities, and this
depends on the choice of (equivalent) type aliases in the definitions.

+ P Type-preserving anchoring: all type equalities should be preserved: i.e., types
that are considered equal before a projection and that remain in scope should still be
considered equal after a projection. Type definitions should not be abstracted away
silently, but only by an explicit opaque ascription. Resolution of avoidance should not
depend on the choices of aliases in the definitions.

2.3.3 Avoidance with applicative functors

Introducing applicative functors in the mix adds a new layer of complexity. While it is possible
to define a type-preserving resolution of avoidance that supports applicative functors, we
believe that it should be restricted to rely on module equivalence. To support that point, we
present the difficulty of designing such resolution through examples, but, more importantly,
we show why we believe that it would be impractical.

Change of domain The abstract type of applicative functors can be thought of as type
functions over a certain domain: the signature of the parameter of the functor.

1 (struct
2 module F (Y:S) = struct type t end
3 module R = struct
4 module F1 (Y:S1) = struct type t = F(Y).t end
5 module F2 (Y:S2) = struct type t = F(Y).t end

10In OCaml 4.14, the -short-path option can give a misleading output, writing the following signature
for the functor: module F : functor (Y:sig type t end) → sig type u = Y.t type v = u end.
It is misleading, because internally the type equality is type v = Y.t and not type v = u. Therefore, the
avoidance algorithm will in fact rewrite the type field, making it abstract type v in the resulting signature
after the application.

40CHAPTER 2. FEATURES AND CHALLENGES OF A MODERN MODULE SYSTEM

6 module X : S’ = ...
7 type t = F(X).t
8 end
9 end).R

Using the abstraction heuristic of OCaml, we would get:

1 sig
2 module F1 (Y:S1) : sig type t end
3 module F2 (Y:S2) : sig type t end
4 module X : S’
5 type t
6 end

All type equalities have been lost, while some could be kept! To preserve type-sharing, one
might be tempted to abstract the type-definition inside F1 and rewrite all paths using F with F1
instead. However, it might not be possible, as F and F1 do not have the same parameter
signature (resp. S and S1). To check if it is correct, one would have to browse the rest of the
signature to find if F is only “used” on a subset of its domain, which makes the resolution of
avoidance non-local. If S2 and S’ happen to be subtypes of S1, then the following signature
is correct:

1 (* if S2 < S1 and S’ < S1 *)
2 sig
3 module F1 (Y:S1) : sig type t end
4 module F2 (Y:S2) : sig type t = F1(Y).t end
5 module X : S’
6 type t = F1(X).t
7 end

If, instead, S1 and S2 are incompatible, i.e., no signature is subtype of both, then it would
not loose type-sharing to abstract the type fields inside the body of both functors:

1 (* if there is no S such that S < S1 and S < S2 *)
2 sig
3 module F1 (Y:S1) : sig type t end
4 module F2 (Y:S2) : sig type t end
5 module X : S’
6 type t = F1(X).t
7 end

Change of arity In addition to the domain, the arity of abstract types could be changed.
We modify the previous example by adding a dummy parameter to F1:

1 (struct
2 module F (Y:S) = struct type t end
3 module R = struct
4 module F1 (Y:S1) (Arg: sig end) = struct type t = F(Y).t end
5 module X : S’ = ...
6 module A = struct end
7 type t = F(X).t
8 end
9 end).R

Again, the abstraction heuristic of OCaml would abstract all type fields mentioning F. How-
ever, in order to use F1 in place of F, we would have to choose a second argument to the
application. This choice would be completely arbitrary and very surprising to the user:

1 sig
2 module F1 (Y:S1) (Arg: sig end) : sig type t end

2.3. A KEY CHALLENGE: THE SIGNATURE AVOIDANCE PROBLEM 41

3 module X : S’
4 module A : sig end
5 type t = F1(X)(A).t
6 end

No invention of functor application Both the examples above constitute cases where
the typechecker would try to solve signature avoidance by creating new functor applications
“out of thin air”, just to refer to types that have lost their original path. While sound, this
would be very surprising to the user, if not misleading. Let us consider this final example,
where the projection renders the List functor inaccessible.

1 module M = (struct
2 module type T = ...
3 module Lists (Y: T) : sig type t (* other fields ... *) end = (* ... *)
4 module R = struct
5 module Sets (E: T) = struct
6 (* ... *)
7 module ToList = struct
8 type elist = Lists(E).t
9 (* extraction from sets to lists ... *)

10 end
11 end
12 module X = (* ... *)
13 type t = Lists(X)
14 end).R

An advanced anchoring algorithm could find the following signature:

1 module M : sig
2 module Sets(E:T) : sig
3 (* ... *)
4 module ToList : sig
5 type elist
6 (* .. *)
7 end
8 end
9 module X : (* ... *)

10 type t = Sets(X).ToList.t
11 end

Here, it suggests the computation of the module Sets(X), while this application was no present
in the original code. We take the stance that such rewrites, while doable, would be confusing
for the user and very hard to predict.

Restricting anchoring Overall, types inside functor applications cannot be considered
“independently” of the functor they were defined in. So if a functor F is lost by projection,
when should anchoring not produce a type error? Here, we suggest an answer: if a functor F’
equivalent to F is still in scope! We reuse the notion of module equivalence explored in
Section 2.2.4: F’ must have a transparent signature of the form (= F < ...). This gives a
simple and predictable criterion, which we propose for the design of anchoring:

+ P Resolution of avoidance based on module equivalence: a path F(X).t can
avoid F if a module equivalent to F is still in scope, and can avoid X if a module equivalent
to X is still in scope.

We believe that the simplicity of this criterion is a key design choice for usability: it
reduces the problem of higher-order avoidance to a first-order problem at the module level.

42CHAPTER 2. FEATURES AND CHALLENGES OF A MODERN MODULE SYSTEM

2.3.4 Signature avoidance in practice

Naming modules OCaml users usually get around signature avoidance errors by explic-
itly naming modules before using them, which adds always-accessible type definitions. The
module syntax of OCaml actually encourages this approach by limiting the places where
inlined, anonymous modules can be used. In particular, projection on an anonymous module
is forbidden. It is however cumbersome, as it prevents some concise code patterns and forces
to expose type definitions.

Interface files Moreover, in practice, OCaml developers often have interface files (with the
extension .mli) that behave as a file-wide ascription. This means that signature avoidance
is actually a problem that occurs during typechecking of intermediary module expressions,
before the final ascription forces a given signature. Therefore, we advocate for a mechanism
that does not fail when sub-expressions cause signature avoidance:

+ C Delayed avoidance: the module system should tolerate and support signatures
with out-of-scope types for intermediary module expressions

2.4 Module-level abstraction

In this section we present module-level abstraction. OCaml features a unique construct in the
ML-family: abstract signatures. They offer module-level ascription and polymorphism, but
come with their own set of challenges. Abstract signatures are both one of the most esoteric
and under-appreciated features of the OCaml module system, which is the only language of
the ML family to have such feature.

Just as signatures can contain abstract type declarations of the form type t (without a
definition), they can contain abstract module-type declarations, of the form module type T
(without a definition).

In Section 2.4.1, we start by introducing abstract signatures through examples. In Sec-
tion 2.4.2, we discuss some issues associated with the feature. We argue that it has surprising
behaviors and, in its current unrestricted form, it is actually too powerful for its own good.
In Section 2.4.3, we propose a restriction to make abstract signatures predicative which, by
decreasing their expressiveness, actually makes them more usable.

2.4.1 Abstract signatures

We introduce abstract signatures via two on-going examples. Fundamentally, they will not
be surprising to readers used to relying on abstraction to protect invariants and factor out
code. Their specificity lies in the fact that they are at the module level, and therefore require
projects with a certain size and a strong emphasis on modularity to be justified.

Module sealing

Let’s consider the following scenario. Two modules providing an implementation of UDP (UDP1
and UDP2) are developed with different design trade-offs. They both implement a signature
with basic send and receive operations. Then, functors are added as layers on top: taking a
UDP library as input, they return another UDP library as an output.

• Reliable adds sequence numbers to the packets and re-sends missing packets;
• CongestionControl tracks the rate of missing packets to adapt the throughput to network

congestion situations;
• Encryption encrypts the content of all messages.

2.4. MODULE-LEVEL ABSTRACTION 43

The resulting signature might look something like:

1 module type UDPLib = sig
2 module type UDP = sig
3 val send : string → unit
4 val get : unit → string
5 (* ... *)
6 end
7

8 module UDP1 : UDP
9 module UDP2 : UDP

10

11 module Reliable : UDP → UDP
12 module CongestionControl : UDP → UDP
13 module Encryption : UDP → UDP
14 end

However, a project might need different combinations of the basic libraries and functors,
while requiring that all combinations use encryption. To enforce this, the solution is to
use the module-level sealing of abstract signatures. In practice, the signature of the whole
library UDPLib, containing implementations and functors (typically, its .mli file) is rewritten
to abstract the UDP interface, except for the output of the Encryption functor.

1 module type UDPLib = sig
2 module type UDP (* abstract! *)
3

4 module UDP1 : UDP
5 module UDP2 : UDP
6

7 module Reliable : UDP → UDP
8 module CongestionControl : UDP → UDP
9 module Encryption : UDP →

10 sig
11 val send : string → unit
12 val get : unit → string
13 (* ... *)
14 end
15 end

Just as type abstraction, signature abstraction can be used to enforce certain code pat-
terns: users of UDPLib will only be able to use the module after calling the Encryption functor,
and yet they have the freedom to choose between different implementations and features:

1 module UDPKeyHandshake = Encryption(Reliable(UDP1))
2 module UDPVideoStream = Encryption(CongestionControl(UDP2))

Module polymorphism

Another use is to introduce polymorphism at the module level. Just as polymorphic func-
tions can be used to factor code, module-level polymorphic functors can be used to fac-
tor module expressions. If a code happens to often feature functor applications of the
form Hashtbl.Make(F(X)) or Set.Make(F(X)), one can define the MakeApply functor as follows:

1 (* Factorizing common expressions *)
2 module type Type = sig module type T end
3 module MakeApply
4 (A:Type) (X: A.T)
5 (B:Type) (F: A.T → B.T)
6 (C:Type) (H: sig module Make : B.T → C.T end) = H.Make(F(X))

44CHAPTER 2. FEATURES AND CHALLENGES OF A MODERN MODULE SYSTEM

Downstream the code is rewritten using MakeApply. Right now, the verbosity of such
example would probably be a deal-breaker. Ignoring the verbosity, this can be useful for
maintenance: by channeling all applications through MakeApply, only one place needs to be
updated if the arity or order of arguments is changed. Similarly, if several functors expect
a constant argument containing – for instance – global variables, an ApplyGv functor can be
defined to always provide the right second argument, which can even later be hidden from
the user of ApplyGv:

1 (* Constant argument *)
2 module Gv : GlobalVars
3 module ApplyGv (Y : sig module type A module type B end)
4 (F : Y.A → GlobalVars → Y.B)(X : Y.A) = F(X)(Gv)

Downstream, code featuring F(X)(GlobalVars) is rewritten into ApplyGv(...)(F)(X). Then,
the programmer can hide the GlobalVars module while letting users use ApplyGv, ensuring that
global variables are not modified in uncontrolled ways by certain part of the program.

Finally, polymorphism can also be used by a developer to prevent unwanted dependencies
on implementation details. If the body of a functor uses an argument with a submodule X,
but actually does not depend on the content of S, abstracting it is a “good practice”:

1 module F (Arg : sig ... module X : S ... end) =
2 struct (* the code can depend on the content of S *) end
3

4 module F’ (Y: sig module type S end)
5 (Arg : sig ... module X : Y.S ... end) =
6 struct (* the code cannot depend on the content of S *) end

2.4.2 Challenges of abstract signatures

In this subsection we explore the issues posed by abstract signatures as currently implemented
in OCaml.

Variant interpretation

The challenge for understanding (and implementing) abstract signatures lies more in the
meaning of the module-level polymorphism that they offer than the module level sealing, the
latter being pretty straightforward. More specifically, the crux lies in the meaning of the
instantiation of an abstract module-type variable A by some other signature S, that happens
when a polymorphic functor is applied. The substitution-based intuition (“replacing all oc-
curences of A by S”) has some surprising behaviors when the signature S contains abstract
types, as they have a variant interpretation: an abstract type in positive position indicates
sealing, while an abstract type in negative position indicates polymorphism. Said differently,
abstract signatures viewed as higher order types are not covariant nor contra-variant.

Therefore, when instantiating an abstract signature with a signature that has abstract
fields, the user must be aware of this, and mentally infer the meaning of the resulting signature.
To illustrate how it can be confusing, let’s revisit the first motivating example and let’s assume
that the developer actually wants to expose part of the interface of the raw UDP libraries. One
might be tempted to instantiate UDP with something along the following lines11:

1 module type UDPLib_expose = sig
2 include UDPLib with module type UDP =
3 sig
4 module type UNSAFE
5 module Unsafe : UNSAFE (* this part remains abstract *)

11We use the construct with module type for the instantiation, which is introduced in Section 6.2.2.

2.4. MODULE-LEVEL ABSTRACTION 45

6 module Safe : sig ... end (* this part is exposed *)
7 end
8 end

Which ex

1 module type UDPLib_expose = sig
2 module type UDP = sig
3 module type UNSAFE
4 module Unsafe : UNSAFE
5 module Safe : sig ... end end
6 module UDP1 : UDP
7 module UDP2 : UDP
8 module Reliable : UDP → UDP
9 module CongestionControl : UDP → UDP

10 module Encryption : UDP → sig val send : string → unit (* ... *) end
11 end

However, the variant interpretation of this signature in the negative positions produces a
counter-intuitive result. If we expand the signature of the argument for the functor ‘Reliable‘
(for instance) we see:

1 module Reliable :
2 sig
3 module type UNSAFE
4 module Unsafe : UNSAFE
5 module Safe : sig ... end
6 end → UDP

This forces the functor to be polymorphic in the underlying implementation of UNSAFE. By
contrast, when the whole UDP signature is abstract, the functor does not have to be polymor-
phic and might depend on the internal details. Therefore, exposing part of UDP while keeping
some abstract completely changes the meaning of the signature. If the user still wants to
expose part of the signature without creating unwanted polymorphism, another pattern can
be used. A shared unsafe core is defined separately and UDP is rewritten to refer to it:

1 module type UDPLib_expose’ = sig
2 module type UNSAFE
3 include UDPLib with module type UDP = sig
4 module Unsafe : UNSAFE
5 module Safe : sig ... end
6 end
7 end

Doing so, the instantiated signature does not contain abstract fields and therefore its variant
reinterpretation will not introduce unwanted polymorphism.

Impredicativity

Abstract module types are impredicative: a signature containing an abstract signature can
be instantiated by itself. One can trick the subtyping algorithm into an infinite loop of
instantiating an abstract signature by itself, as shown by Rossberg12, adapting an example
from Harper and Lillibridge [1994]:

1 module type T = sig
2 module type A
3 module F : A → sig end
4 end
5

12See https://sympa.inria.fr/sympa/arc/caml-list/1999-07/msg00027.html

https://sympa.inria.fr/sympa/arc/caml-list/1999-07/msg00027.html

46CHAPTER 2. FEATURES AND CHALLENGES OF A MODERN MODULE SYSTEM

6 module type I = sig
7 module type A
8 module F : (T with module type A = A) → sig end
9 end

10

11 module type J = (T with module type A = I)
12

13 module Loop (X:J) = (X:I)

During the typechecking of the functor Loop, a subtyping check is made between J and I, i.e.,
between T[A <- I] and I. This leads to instantiating A by I in the right-hand side. When
comparing the two functor declarations, the subtyping between the two arguments is again
(by contravariance) the subtyping between T[A <- I] and I: the typechecker is thrown in a
loop.

Impredicativity also allows type-checking of (non-terminating) programs with an absurd
type, as shown by the encoding of Girard’s paradox by Leo White13.

Module-level-sharing

Abstract signatures require module-level sharing, like the transparent signatures presented
in Section 2.2.4. To see why, let us consider the following two functors:

1 module F1 (Y: sig module type A module X : A end) = Y.X
2 module F2 (Y: sig module type A module X : A end) = (Y.X : Y.A)

Currently, both are given the same type:

1 module F1 (Y: sig module type A module X : A end) : Y.A
2 module F2 (Y: sig module type A module X : A end) : Y.A

However, we would expect the body of F1 to preserve type-sharing with its argument, while
the F2 uses an opaque ascription and should indeed loose type-sharing. With transparent
signatures, we would get:

1 (* Currently, both are given the same type: *)
2 module F1 (Y: sig module type A module X : A end) : (= Y.X < Y.A)
3 module F2 (Y: sig module type A module X : A end) : Y.A

Other issues

The implementation of abstract signatures has a number of issues besides the theoreti-
cal known ones mentioned above. We uncovered new ones, notably: OCaml#12204 and
OCaml#10491.

2.4.3 Simple abstract signatures

In this section we present a restriction for abstract signatures that seems to cover all useful
cases. The main criticism we make of the OCaml approach is that it is actually too expressive
for its own good. Having impredicative instantiation with variant reinterpretation is hard
to track for the user and interacts in very subtle ways with other features of the module
system. To address this, we take the opposite stance and propose to make the system actually
predicative: we restrict the set of signatures that can be used to instantiate an abstract
signature. This also indirectly addresses the complexity of the variant reinterpretation.

13See https://github.com/lpw25/girards-paradox/tree/master

https://github.com/ocaml/ocaml/issues/12204
https://github.com/ocaml/ocaml/issues/10491
https://github.com/lpw25/girards-paradox/tree/master

2.4. MODULE-LEVEL ABSTRACTION 47

+ M Predicative abstract signatures: we propose to restrict the instantiation of ab-
stract signatures by simple signatures: signatures that may contain abstract type fields
but no abstract module-type fields.

Expressivity One might wonder how restrictive this proposal is. Specifically, if we consider
a simple polymorphic functor as:

1 module Apply (Y : sig module type A end) (F : Y.A → Y.A)(X : Y.A) = F(X)

The following partial application would be rejected:

1 (* Rejected as A would be instantiated by
2 ‘sig module type B module X : B → B end‘ *)
3 module Apply’ = Apply(struct
4 module type A = sig module type B module X : B → B end
5 end)

However, this could be circumvented by eta-expanding, thus expliciting module type param-
eters, and instantiating only a simple signature:

1 (* Accepted as A is instantiated by a signature with no abstract fields *)
2 module Apply’’ = functor (Y:sig module type B end) →
3 Apply(struct
4 module type A = sig module type B = Y.B module X : B → B end
5 end)

Module-type arguments for functors A key aspect of abstract module types that re-
duces their usability is the fact that signatures have to be given as part of a module. Instead,
we propose module-type arguments for functors. In practice, they could be indicated by using
brackets instead of parenthesis, and interleaved with normal module arguments, as in this
example:

1 (* At definition *)
2 module MakeApply
3 [A] (X:A)
4 [B] (F: A → B)
5 [C] (H : sig module Make : B → C end)
6 = H.Make(F(X))
7

8 module ApplyGv
9 [A] [B] (F:A → GlobalVars → B) (X:A)

10 = F(X)(Gv)
11

12 (* At the call site *)
13 module M1 = MakeApply
14 [T] (X)
15 [Hashtbl.HashedType] (F)
16 [Hashtbl.S] (Hashtbl)
17

18 module M2 = ApplyGv [A] [B] (F) (X)

Technically, this is not just syntactic sugar for anonymous parameters due to the fact that
OCaml relies on names for applicativity of functors. Similarly, type arguments for functors
could also be useful. Further work is needed to see if they are worth the effort. We conjecture
that the introduction of modular implicits (see Section 6.2.1) could bring more use-cases for
those features. Finally, usability of abstract signatures could even be improved with some

48CHAPTER 2. FEATURES AND CHALLENGES OF A MODERN MODULE SYSTEM

form of inference at call sites. Further work is needed to understand to what extent this could
be done, and how useful it would be.

Chapter 3

The ML source system

In this short technical chapter we present our OCaml-like language that we study in the rest
of this thesis. We refer to it as the source language. We discuss the syntax, some syntactic
mechanisms, and the semantics of the language in this chapter. We present two type systems
for this language in the next two chapters (Chapter 4,Chapter 5).

Overview In Section 3.1, we present the syntax and discuss technical choices, syntactic
sugar, and other practical aspects. In Section 3.2 we define a type-erasing semantics on the
source syntax.

3.1 Syntax

The source syntax is given in Figure 6, and discussed below. The language is the combination
of three main parts: paths and identifiers, module and signatures and the core language. We
start with some minor notational choices:

• Fonts: module-related meta-variables use typewriter uppercase letters, M, S, etc., while
lowercase letters are used for expressions and types of the core language. Lists are
written with an overhead bar: D is a list of D. Identifiers I and paths P use a standard
(mathematical) font.

• Structures and components: we separate declarations D from signatures S and,
respectively, bindings B from module expressions M. In the literature, declarations and
signatures (and bindings and modules) are sometimes merged in the same syntactic
category.

• Functor parameters Y are α-convertible, i.e., can be freely renamed. The other
identifiers (X, T , x, and t) cannot be renamed, as they play the role of both internal
and external names.

• Code inserts to distinguish them from OCaml (on the left-hand side), the code insert
in our source language (on the right-hand side) have a blue background, as in:

1 module M = struct type t = int end 1 moduleM = struct type t = int end

Self-references In order to simplify the treatment of scoping and shadowing, we introduce
self-references, ranged over by letter A, in both structures and signatures. They are used to
refer to the current object; their binding occurrence appears as a subscript to the structure
or signature they belong to (structA . . . end, sigA . . . end). They are α-convertible. Im-
portantly, they do not serve as a way to define recursive structures or define forward
references. They will serve to make structures and signatures behave as telescopes, where
each field can access previously defined ones. We explain how they help treat shadowing
in Section 3.1.1. OCaml could be easily translated to fit into this syntax, by a simple pass
that introduces a fresh self-reference to every structure and structural signature present in
the code.

Prefixes In order to have a uniform treatment of accesses to local and non-local variables,
we use prefixes, written with the letter Q, to range over either a path P or a self-reference A.

49

50 CHAPTER 3. THE ML SOURCE SYSTEM

Paths and Prefixes
P ::= Q.X (Qualified module)

| Y (Module Parameter)
| P (P) (Applicative application)

Q ::= A | P (Prefix)

Identifiers
I ::= x (Variable)
| t (Type)
| X (Module)
| T (Module type)

Module Expressions
M ::= structA B end (Structure)
| P (Path)
| (Y : S)→ M (Applicative functor)
| ()→ M (Generative functor)
| P () (Generative application)
| M.X (Anonymous projection)
| (P : S) (Ascription)

Bindings
B ::= letx = e (Value)
| type t = u (Type)
| moduleX = M (Module)
| module type T = S (Module type)

Signatures
S ::= sigA D end (Structural signature)
| (= P < S) (Transparent signature)
| (Y : S)→ S (Applicative functor)
| ()→ S (Generative functor)
| Q.T (Module type)

Declarations
D ::= valx : u (Value)
| type t = u (Type)
| moduleX : S (Module)
| module type T = S (Module type)

Core language expressions
e ::= . . . (Other constructs)
| Q.x (Qualified value)

Core language types
u ::= . . . (Other constructs)
| Q.t (Qualified type)

Figure 6: Syntax of our OCaml-like language

3.1. SYNTAX 51

Abstract types We use a convention to represent abstract type fields: they are type fields
pointing to themselves, of the form type t = A.t where A is the self-reference of the current
structure (which is often grayed out to emphasize that there is no actual definition). It is a
way to remove the need to distinguish between abstract and concrete type fields in the syntax,
and simplify the treatment of strengthening in Chapter 5.

Core language We leave abstract a core language of expressions e and types u. This
language can be thought of as ML, but could also contain exotic features. We only extend
the language of terms with qualified values Q.x that are values bound by the module level,
and the language of types with qualified types Q.t that are types bound by the module level.
These are the only ways for the core level to access the module level.

Functors As in OCaml, we syntactically distinguish applicative and generative functors:
generative functors take a special unit argument () as input. The unit argument () is not the
same as an empty structure struct end. We find the effect-suggesting syntax of taking a
unit argument fitting, as calling a generative functor can indeed produce effects. Our gram-
mar features unary applicative functors and nullary generative functors. A unary generative
functor can be obtained as an applicative functor returning a generative one via the currying
notation:

(Y : S) ()→ M ≜ (Y : S)→ ()→ M

While n-ary applicative functors are straightforward, one might wonder if n-ary generative
functors require a unit argument between every parameter. Actually, the () acts as a generative
barrier and can be placed to control the sharing between partial applications:

(Y1 : S1)(Y2 : S2)()→M

is fully generative (every instance is new), while

(Y1 : S1)()(Y2 : S2)→M

is generative with regard to the first argument and applicative with regard to the second one.

Projectibility Choosing (1) whether projection is allowed on any module expression or
only on a restricted subset, and (2) how the core language can refer to values and types of
modules is an important design choice in ML systems, coined projectibility by Dreyer et al.
[2003]. Contrary to F-ing (Rossberg et al. [2014]), but following Leroy [1995] and Russo [2004]
(and others), we chose to use a syntactic notion of path.

• We allow projection on any module expression, but we restrict functor applications and
ascriptions to paths. OCaml does the opposite, mainly to prevent code patterns prone
to triggering signature avoidance. Our choice is more general, as we can define a let
construct for modules using the following syntactic sugar:

let X = M in M′ ≜ (structA module X = M module Res = M′ end).Res

Using this construct, we easily get functor application and ascription on arbitrary mod-
ule expressions as syntactic sugar:

M(M′) ≜ let F = M in let X = M′ in F (X)

M() ≜ let G = M in G()

(M : S) ≜ let X = M in (X : S)

By contrast, the OCaml choice forces encoding projection M.X as an anonymous functor
call ((Y : S)→ Y.X) M. This requires an explicit signature annotation on the argument
and thus cannot be seen as syntactic sugar.

52 CHAPTER 3. THE ML SOURCE SYSTEM

• A qualified access inside a generative functor application, of the form G().t, is syntacti-
cally ill-formed, as paths do not contain the unit argument (). By contrast, a qualified
access inside an applicative functor application F (X).t is permitted.

• A qualified access inside a module type, which would be of the form Q.T.t, is syntacti-
cally ill-formed, as paths do not contain module type identifiers T .

• We only provide opaque ascription in module expressions, as concrete ascription is given
by the following syntactic sugar: (P < S) ≜ (P : (= P < S))

As both path and module expressions feature a projection dot, the grammar is slightly am-
biguous. However, this is not a problem as we see paths as a subset of module expressions.
In particular, we only consider the projection dot of module expressions in the typing rules.

Transparent ascription Transparent ascription as a module expression, as available in
SML, can be encoded using either a normal ascription with a transparent signature, or as a
anonymous functor call:

either (M < S) ≜ let X = M in (X : (= X < S))

or (M < S) ≜ let F = ((Y : S)→ Y) in F (M)

Program Formally, we can define the top-level of a file as the body of a generative functor

Example 3.1.1. We compare side by side an OCaml .ml file (left-hand side) and the same
program in our source language (right-hand side):

1 (* code.ml *)
2 module type T = sig
3 type t
4 val x : t
5 end
6 module X : T = struct
7 type t = int
8 let x : t = 42
9 end

10 module F (Y:T) : T = Y
11 module X’ = F(X)

1 ()→ sigA
2 module type T = sigB
3 type t = B.t
4 valx : B.t
5 end

6 moduleX = (sigC
7 type t = int

8 letx = (42 : C.t)
9 end : A.T)

10 moduleF = (Y : A.T)→ (Y : A.T)
11 moduleX ′ = A.F (A.X)
12 end

The self-references are used to disambiguate the identifiers. We often gray them out for read-
ability. The abstract type field at line 3 is written as a type pointing to itself. The whole
program is the body of an applicative functor.

3.1.1 Name-spaces

Scopes The structure of paths defines scopes: names are accessible only in some parts of
the code. The two constructs that introduce a new scope in signatures are generative functors
and module types declarations:

()→ S module type T = S

The fields defined in S introduce names that are not accessible outside of S, as there is no path
with a unit argument and no path with a projection out of a module type name. Similarly
for module expressions, generative functors and module type bindings create new scopes. By

3.2. SEMANTICS 53

contrast, module declarations and applicative functors introduce sub-scopes that are still part
of the same enclosing scope. If we consider:

moduleX : sigA type t = . . . end (Y : Sa)→ sigA type t = . . . end

the name t is accessible outside of the signature, via a qualified access with a path.

3.1.2 Shadowing

There are two main variants of shadowing: direct and local. Direct shadowing occurs when
two bindings are made with the same name in the same structure or the same structural
signature. OCaml allows direct shadowing of value fields in structures, which is used by
some coding patterns, but disallows direct shadowing of type fields1. In the type systems of
both Chapter 4 and Chapter 5, we disallow direct shadowing. Local shadowing occurs when
a binding made inside a structure uses the same name as a binding coming from an enclosing
structure. In our language, we use self-references to disambiguate between the two bindings.
Let us consider the following example in OCaml (on the left-hand side) and our language
(on the right-hand side):

1 module M = struct
2 type t = int
3 module X = struct
4 type t = bool
5 val x : t = true
6 end
7 type u = t * X.t
8 end

1 moduleM = structA
2 type t = int

3 moduleX = structB
4 type t = bool

5 let x : B.t = true

6 end

7 typeu = A.t×A.X.t
8 end

Using self-references, we can distinguish A.t and B.t: they are considered as different qualified
types. In OCaml, at line 5, the name t refers to the local definition at line 4, which has
shadowed the declaration at line 2. This shadowing ends when we exit the submodule, at
line 6, then both declarations become accessible simultaneously. Internally, OCaml gener-
ates fresh identifiers attached to every name for disambiguation. This serves more-or-less the
same purpose as self-references, but in an effectful way that would be hard to model formally.
By contrast, self-references act as a normal name binder attached to the structure (or signa-
ture), they can be freely renamed (α-convertibility). Additionally, self-references also help the
treatment of strengthening in Chapter 5. We believe that overall, they simplify the formal
presentation at the cost of being more verbose.

3.2 Semantics

ML modules have (surprisingly) very simple semantics. Basically, at runtime, all types are
erased (the semantic is said to be type-erasing) and modules are elaborated away into the
untyped core-language constructs (using functions and records). The type-erasing semantics
ensures that safety guarantees of the type system are obtained at no cost at runtime.

Core language We assume that the untyped core language supports simple untyped func-
tions, records, and unit arguments. Formally, we suppose that it extends the following calcu-
lus:

e ::= x | () | λx.e | e e |
{
ℓi = xi

}
| e.ℓ | e@ e | . . . (Terms)

v ::= x | () | λx.e |
{
ℓi = vi

}
| . . . (Values)

1include and open have a special treatment: the declarations or bindings imported by them can be
shadowed, even type fields, but they cannot be used to shadow neither a type or value field.

54 CHAPTER 3. THE ML SOURCE SYSTEM

We denote record concatenation with the symbol @. For the semantics, we define a notion of
evaluation contexts C[•] as:

C[•] ::= • e | v • |
{
ℓ = v, ℓi = •, . . .

}
The small-steps semantic judgment, written e⇝ e′, is given by the following rules (where #
denotes disjointedness of the lists of labels):

(λx.e) v ⇝ e[x 7→ v] {. . . , ℓ = v, . . .} .ℓ⇝ v

ℓ1#ℓ2{
ℓ1 = v1

}
@
{
ℓ2 = v2

}
⇝

{
ℓ1 = v1, ℓ2 = v2

} e⇝ e′

C[e]⇝ C[e′]

Type erasure We can then define an erasing operation ⌊·⌋ that translates modules and
paths into terms of this untyped calculus. We start with two technical details:

1. We assume a collection of labels indexed by identifiers, i.e., ℓI is the unique label asso-
ciated with the identifier I

2. We assume that variables of the core language can be extended to contain a collection
of variables of the form xA,I for any self-reference A and identifier I and contain a
collection of variables or the form xY for any functor parameter Y .

We define the erasing translation. Elaboration of paths is defined by induction as follows:

⌊A.X⌋ = xA,X ⌊P.X⌋ = ⌊P ⌋.ℓX ⌊Y ⌋ = xY ⌊P (P ′)⌋ = ⌊P ⌋ (⌊P ′⌋)

Then the elaboration of module expressions and bindings is defined inductively as follows:

⌊(P : S)⌋ = ⌊P ⌋ ⌊M.X⌋ = ⌊M⌋.ℓX ⌊structA D end⌋ = ⌊D⌋A ⌊()→ M⌋ = λx.⌊M⌋

⌊(Y : S)→ M⌋ = λxY .⌊M⌋ ⌊P ()⌋ = ⌊P ⌋()

⌊letx = e, D⌋A = (λx′A,x.
{
ℓx = x′A,x

}
@ ⌊D⌋A) ⌊e⌋ ⌊type t = u, D⌋A = ⌊D⌋A ⌊∅⌋A = {}

⌊moduleX = M, D⌋A = (λxA,X . {ℓX = xA,X}@ ⌊D⌋A) ⌊M⌋ ⌊module type T = S, D⌋A = ⌊D⌋A

And that’s it. ML modules are an interesting case of programming language research where
the type system is quite complex, with involved soundness proofs, while the semantic model
is mostly trivial. In the literature, the underlying semantic is sometimes not even mentioned.

Chapter 4

Mω

In this chapter, we present Mω (pronounced “Mo-me-ga”), a type system for ML modules
that produces inferred signatures in an ML-like syntax extended with type binders (∃, ∀, λ)
of Fω, the higher-order polymorphic lambda calculus. The goal of this system is to provide
a specification and an intuition for the core mechanisms informally presented in the previous
chapter. The system is proven sound by a full elaboration in Fω.

Contributions Mω is strongly inspired by previous works, notably Rossberg et al. [2014]
and Russo [2004]. The core contributions of this chapter are the introduction of transpar-
ent existential types for the soundness proof of the skolemization operation, the anchoring
algorithm for reconstruction of source signatures from Mω signatures and the treatment of
abstract signatures via predicative kind polymorphism.

Code inserts To distinguish Mω signatures from sources ones, we use the following con-
vention: Mω signatures have a red background (on the right-hand side), as in:

1 moduleM : sig type t = int end 1 module M : sig type t = int end

Overview We present the type system in Section 4.1: the elaboration of ML signatures
into Mω signatures is presented in Section 4.1.2, along with the key mechanisms of extrusion
and skolemization. Subtyping is presented in Section 4.1.3. The typing of module expressions
is detailed in Section 4.1.4.

In Section 4.2, we explain how the right granularity of applicativity can be piggy-backed
on the type system by introducing extra identity abstract-type fields.

In Section 4.3, we focus on the reconstruction of source signatures from Mω signatures, a
process call anchoring that acts as the inverse of the signature elaboration. We first explicit
the expressiveness gaps of the source signature syntax, then we present an algorithm that
implements anchoring. Finally, we state and prove the properties of this algorithm.

In Section 4.4, we prove the soundness of Mω via a full elaboration into Fω. This proof
relies on the new mechanism of transparent existential types (Section 4.4.4), a weaker form
of existential types that supports skolemization. We show that extending Fω with existential
types can be done internally, i.e., we define transparent existential types as a library of Fω

(Section 4.4.5). Finally, the actual elaboration is given and proven sound with respect to Fω

typing rules (Sections 4.4.6 and 4.4.7).

55

56 CHAPTER 4. Mω

Mω Kinds
κ ::= ⋆ | κ�κ

Mω Types
τ ::= α | τ(τ) | λα.τ | . . .

Environment
Γ ::= ∅ (Empty)
| Γ, α (Abstract type)
| Γ, (Y : C) (Functor parameter)
| Γ, (A.D) (Declaration)

Opacity
♢ ::= ▽ (Transparent) | ▼ (Opaque)

Mω signature
C ::= sig D end (Structural signature)
| ∀α.C → C (Applicative functor)
| ()→ ∃▼α.C (Generative functor)

Mω declaration
D ::= val x : τ (Values)

| type t = τ (Types)
| module X : C (Modules)
| module type T = λα.C (Module-types)

Figure 7: Syntax of Mω signatures and typing environment.

4.1 The Mω type system

We start with an introductory example.

Example 4.1.1. On the left-hand side, we give a snippet of code, where an ascription is used
at several places to introduce abstract types. On the right-hand side, the corresponding Mω

signature is given.

1

2 module type T = sigC type t = C.t end
3 moduleX =
4 (structA type t = int end : A.T)
5 moduleX ′ = struct

6 moduleX ′′ =
7 (structA type t = bool end : A.T)
8 end

9 moduleF = (Y : A.T)→
10 (structA type t = Y.t× Y.t end : A.T)
11 moduleG = ()→
12 (structA type t = int ref end : A.T)

1 ∃▽α1, α2, φ .
2 module type T = λγ.sig type t = γ end
3 module X :
4 sig type t = α1 end
5 module X ′ : sig
6 module X ′′ :
7 sig type t = α2 end
8 end
9 module F : ∀β.sig type t = β end→

10 sig type t = φ(β) end
11 module G : ()→
12 ∃▼α.sig type t = α end

The main mechanisms of Mω typing are at play in the above example. Abstract types
introduced by ascriptions on the left-hand side are represented by quantified abstract types
in Mω. While they might be introduced deep in the signature, as in the submodule X ′′,
the quantifier are extruded to the top of the signature, making the type variables α1 and α2

accessible in all the following declarations. Extrusion out of applicative functors leads to
skolemization: the type variable φ becomes higher-order. By contrast, type variables are
not extruded out of generative functors (line 12). Finally, module type definitions introduce
lambda-bound variables.

4.1.1 Overview and technical details

In Figure 7, we introduce the syntax for Mω-signatures C and Mω-declarations D and typing
environments Γ. By convention, we use curvy capitals (C, D, . . .) for Mω-objects.

4.1. THE Mω TYPE SYSTEM 57

Types The grammar of Mω types is the same as the grammar of source types, except that
qualified types Q.t are replaced by abstract types α or applied abstract types τ(τ), where α
ranges over a collection of abstract-type variables that are distinct from the type variables
of the source type language. We use the base kind ⋆ for the kind of first-order types, and
κ�κ for the higher-order kinds. In the examples, we sometimes use φ instead of α to denote
a higher-order type variable. The language is explicitly kinded, as is Fω. However, we leave
kinds mostly implicit in this section for the sake of readability – we display them for the
soundness proof in Section 4.4.

Quantifiers positions Mω-signatures C use Fω binders: the universal binder ∀ for functor
parameters, the existential binder ∃ for the body of generative functors and the (type level)
lambda binder λ for module-types. We annotate existential quantifiers with an opacity flag ♢
to indicate generativity (using the opaque flag ▼) or applicativity (using the transparent
flag ▽). This notion is unrelated to transparent signatures. Transparent existentials ∃▽α.C
do not appear directly in the grammar of Figure 7 but in the typing judgment for module
expressions, which uses existentially quantified signatures of either form ∃▽α.C or ∃▼α.C.
Module-types λα.C are parametric in each type variable α. A parametric signature λα.C
may later be transformed into a universal signature ∀α.C, an existential signature ∃♢α.C, or
just a normal signature C[α 7→ τ]. Crucially, module declarations module X : C do not allow
quantifiers in front of C: they must have been extruded away at the top of the signature.
Similarly, there is no quantifier inside the codomain of applicative functors ∀α.Ca → C: they
must have been skolemized away.

Type equivalence We consider Mω types up to αβ-equivalence. α-equivalence is standard:
bound type variables and functor parameters can be freely renamed, but other identifiers
cannot. β-equivalence is defined as the symmetric, reflexive, and transitive and congruent
closure of β-reduction, which is defined by the single following rule for type applications:

(λα.σ)τ ⇝β σ[α 7→ τ]

Environments and wellformedness Typing environments contain three types of bind-
ings: an abstract type variable (α :κ), a functor argument Y : C, or a declaration A.D. All
bindings in Γ are unique (there is no shadowing). Technically, this is achieved by defining
mutually recursive wellformedness predicates over environments ⊢ Γ, signatures Γ ⊢ C, and
declarations Γ ⊢ D, along with a well-kindness predicate for types Γ ⊢ τ : κ. The rules are
standard and given in Figure 8. We write · /∈ Γ as a shortcut for · /∈ dom(Γ). The only
subtlety comes from the wellformedness of structural signatures:

disjoint(D) Γ ⊢ D
Γ ⊢ sig D end

Here, we use a helper predicate disjoint(D) to ensure that all field identifiers present in the
list D are pair-wise distinct.

Wellformedness conditions As a simplifying convention for the rest of this chapter, we
consider wellformedness of the environment as a precondition to all rules. Alternatively, we
could have added wellformedness preconditions sparingly, only to the rules that are leaves
of the derivation, i.e., that do not have another typing or subtyping as a premise. Then,
we would have shown that typing and subtyping always implies the wellformedness of the
environment: a rule is either a leaf and has an explicit wellformedness premise, or is not a
leaf and the wellformedness of the environment is implied by another premise by induction
hypothesis. Here, we do not see any benefit in this latter approach and we use the simplifying
convention of having wellformedness everywhere.

58 CHAPTER 4. Mω

⊢ ∅
⊢ Γ α /∈ Γ

⊢ Γ, (α :κ)

Y /∈ Γ Γ ⊢ C
⊢ Γ, Y : C

Γ ⊢ τ : ⋆ A.x /∈ Γ

⊢ Γ, A.val x : τ

Γ ⊢ τ : κ A.t /∈ Γ

⊢ Γ, A.type t = τ

Γ ⊢ C A.X /∈ Γ

⊢ Γ, A.module X : C
α /∈ Γ Γ, (α :κ) ⊢ C A.T /∈ Γ

⊢ Γ, A.module type T = λ(α :κ).C

(a) Wellformedness of environments

disjoint(D) Γ ⊢ D
Γ ⊢ sig D end

Γ, (α :κ) ⊢ Ca Γ, (α :κ) ⊢ C
Γ ⊢ ∀(α :κ).Ca → C

Γ, (α :κ) ⊢ C
Γ ⊢ ()→ ∃▼(α :κ).C

(b) Wellformedness of signatures

Γ ⊢ τ : ⋆

Γ ⊢ val x : τ

Γ ⊢ τ : κ

Γ ⊢ type t = τ

Γ ⊢ C
Γ ⊢ module X : C

Γ, (α :κ) ⊢ C
Γ ⊢ module type T = λα.C

(c) Wellkindness of declarations

⊢ Γ (α :κ) ∈ Γ

Γ ⊢ α : κ

Γ ⊢ τ : κ�κ′ Γ ⊢ σ : κ

Γ ⊢ (τ σ) : κ′
Γ, (α :κ) ⊢ τ : κ′

Γ ⊢ λ(α :κ). τ : κ�κ′

(d) Wellkindness of types

Figure 8: Wellformedness rules for environments, signatures, declarations, and types.

Judgments

• Γ ⊢ M : ∃♢α.C and Γ ⊢ D : ∃♢α.D – typechecking of modules and bindings, defined in Fig-
ure 12 and discussed in Section 4.1.4.

• Γ ⊢ S : λα.C and Γ ⊢ D : λα.C – typechecking of signatures and declarations, defined
in Figure 9 and discussed in Section 4.1.2.

• Γ ⊢ u : τ and Γ ⊢ e : τ – elaboration of core-language types and type-checking of core-
language expressions.

• Γ ⊢ C < C′ and Γ ⊢ D < D′ – subtyping of signatures and declarations, defined in Fig-
ure 11 and discussed in Section 4.1.3.

4.1.2 Signatures type-checking

The key concepts of Mω can be illustrated with the typechecking of signatures Γ ⊢ S : λα.C
(and declarations), which translates a source signature S into its Mω counterpart λα.C, making
the set of abstract type α explicit. The typechecking of signatures also acts as an elaboration:
source signatures are checked and translated into Mω-signatures. We refer to both typechecking
and elaboration, using the former to emphasize the wellformedness check and the latter to
emphasize the translation into the Mω-signature language. The full set of rules is given
in Figure 9 and discussed below.

4.1. THE Mω TYPE SYSTEM 59

M-Typ-Sig-ModType
Γ ⊢ P : sig D end module type T = λα.C ∈ D

Γ ⊢ P.T : λα.C

M-Typ-Sig-LocalModType
A.module type T = λα.C ∈ Γ

Γ ⊢ A.T : λα.C

M-Typ-Sig-GenFct
Γ ⊢ S : λα.C

Γ ⊢ ()→ S : ()→ ∃▼α.C

M-Typ-Sig-AppFct
Γ ⊢ Sa : λα.Ca Γ, α, Y : Ca ⊢ S : λβ.C

Γ ⊢ (Y : Sa)→ S : λβ′.∀α.Ca → C
[
β 7→ β′(α)

]
M-Typ-Sig-Str

Γ ⊢A D : λα.D A /∈ Γ

Γ ⊢ sigA D end : λα.sig D end

M-Typ-Sig-Trans
Γ ⊢ P : C Γ ⊢ S : λα.C′ Γ ⊢ C < C′[α 7→ τ]

Γ ⊢ (= P < S) : C′[α 7→ τ]

(a) Signature typing rules.

M-Typ-Decl-Val
Γ ⊢ u : τ

Γ ⊢A (valx : u) : (val x : τ)

M-Typ-Decl-Type
Γ ⊢ u : τ

Γ ⊢A (type t = u) : (type t = τ)

M-Typ-Decl-TypeAbs
Γ ⊢A (type t = A.t) : λα.(type t = α)

M-Typ-Decl-Mod
Γ ⊢ S : λα.C

Γ ⊢A (moduleX : S) : λα.(module X : C)

M-Typ-Decl-ModType
Γ ⊢ S : λα.C

Γ ⊢A (module type T = S) : (module type T = λα.C)

M-Typ-Decl-Empty
Γ ⊢A ∅ :∅

M-Typ-Decl-Seq
Γ ⊢A D1 : λα1.D1 Γ, α1, A.D1 ⊢A D : λα.D

Γ ⊢A D1, D : λα1 α. D1,D

(b) Declaration typing rules.

M-Typ-Type-Path
Γ ⊢ P : sig D end type t = τ ∈ D

Γ ⊢ P.t : τ

M-Typ-Type-Local
A.type t = τ ∈ Γ

Γ ⊢ A.t : τ

(c) Extension to the core-language typing rules

Figure 9: Signature and declaration typing rules.

60 CHAPTER 4. Mω

Extrusion

During the typechecking of declarations, an abstract-type variable is introduced for each
abstract type field and its binder is extruded step by step until a scope barrier is reached.
Doing so, the scope of the binder extends to the whole region where the abstract type field
is accessible by a path. This mechanism can be seen in action in Figure 10 An abstract type
declaration introduces an abstract type variable α that is λ-bound:

M-Typ-Decl-TypeAbs
Γ ⊢A (type t = A.t) : λα.(type t = α)

Since the name t is also accessible in the following declarations, the λ-binder for α must
be extruded (we also use the term lifted) to enclose the whole region where t, hence α, is
accessible. This lifting is performed in two places:

M-Typ-Decl-Seq
Γ ⊢A D1 : λα1.D1 Γ, α1, A.D1 ⊢A D : λα.D

Γ ⊢A D1, D : λα1 α. D1,D

M-Typ-Decl-Mod
Γ ⊢ S : λα.C

Γ ⊢A (moduleX : S) : λα.(module X : C)

First, when merging a list of declarations in Rule M-Typ-Decl-Seq: the two sets of abstract
types α and α1 are merged together in front of the list of declarations. Second, lifting also
occurs when typing a module declaration (Rule M-Typ-Decl-Mod) where the set of abstract
types α introduced in the elaboration of S are lifted to the outside of the declaration. In a
nutshell, abstract types introduced by submodules are not bound at the declaration of the
submodule, but lifted to the enclosing signature.

By contrast, when typing module-type declarations (Rule M-Typ-Decl-ModType), the
binder is not lifted, as the module-type declaration defines its own scope. The declarations
inside C are not accessible in the rest of the enclosing signature.:

M-Typ-Decl-ModType
Γ ⊢ S : λα.C

Γ ⊢A (module type T = S) : (module type T = λα.C)

Typing declarations of value or type fields relies on the elaboration judgment Γ ⊢ u : τ of
core-language types into Fω which is left abstract:

M-Typ-Decl-Val
Γ ⊢ u : τ

Γ ⊢A (valx : u) : (val x : τ)

M-Typ-Decl-Type
Γ ⊢ u : τ

Γ ⊢A (type t = u) : (type t = τ)

Still, we extend the core-language judgment with rules to translate qualified types into Mω

types:
M-Typ-Type-Path
Γ ⊢ P : sig D end type t = τ ∈ D

Γ ⊢ P.t : τ

M-Typ-Type-Local
A.(t : type τ) ∈ Γ

Γ ⊢ A.t : τ

Signatures

Structural signatures The typing of declarations is injected in the typing of signatures
by the rule for structural signatures:

M-Typ-Sig-Str
Γ ⊢A D : λα.D A /∈ Γ

Γ ⊢ sigA D end : λα.sig D end

This is the last place where extrusion happens (see M-Typ-Decl-Type, M-Typ-Decl-Mod,
M-Typ-Decl-Seq for the other rules): the abstract types α introduced by the declarations
are lifted in front of the whole signature.

4.1. THE Mω TYPE SYSTEM 61

1 sigA
2 type t = A.t
3 module type T =
4 sigC type t = C.t end
5 moduleX : A.T
6 moduleG : ()→ A.T
7 moduleF : (Y : A.T)→ A.T
8

9 type v = A.t×A.X.t
10 typew = A.F (A.X).t
11 end

1 λα1, α2, φ.sig
2 type t = α1

3 module type T =
4 λα.sig type t = α end
5 module X : sig type t = α2 end
6 module G : ()→ ∃▼α.sig type t = α end
7 module F : ∀β.sig type t = β end→
8 sig type t = φ(β) end
9 type v = α1 × α2

10 type w = φ(α2)
11 end

Figure 10: On the left-hand side, we consider a source signature. The corresponding signature
resulting from typechecking in Mω is given on the right-hand side. Here, the signature is
mostly composed of type declarations because it displays the interesting mechanisms of the
type system, but in real use cases, signatures are mostly composed of value declarations. Both
the abstract type variables α1, α2, and φ are extruded at the top-level of the signature, even
though they come from different levels of the signature. The intermediate definition of the
module-type T is inlined. The applicative functor introduces a higher-order type φ, while the
generative one introduces only a base kind type variable that is not extruded.

Module-types Module-type definitions are inlined by the following two rules:

M-Typ-Sig-ModType
Γ ⊢ P : sig D end module type T = λα.C ∈ D

Γ ⊢ P.T : λα.C

M-Typ-Sig-LocalModType
A.(T : module type λα.C) ∈ Γ

Γ ⊢ A.T : λα.C

Therefore, Mω signatures do not have a counterpart for module-type paths Q.T that occur in
source signatures.

Transparent signatures Rule M-Typ-Sig-Trans displays an interesting mechanism:

M-Typ-Sig-Trans
Γ ⊢ S : λα.C Γ ⊢ P : C′ Γ ⊢ C′ < C[α 7→ τ] Γ ⊢ τ : κ

Γ ⊢ (= P < S) : C[α 7→ τ]

The source signature S is first elaborated into an Mω-signature λα.C′. The Mω-signature C
of the path P is then obtained by module typing. From there, we use subtyping to compare
the two signatures. But there is a catch: λα.C is parametric, whereas C′ is not. Therefore,
we need to first find an instantiation of the abstract types α by some concrete types τ .
Finding such instantiation is non-trivial, especially in the presence of higher-order types.
This problem is discussed in more details along with subtyping in Section 4.1.3. Once the
instantiation has been found, the instantiated signature C[α 7→ τ] can be compared against
C′. The result of the elaboration is the instantiation C[α 7→ τ]. Notably, no new abstract
type is introduced. This follows the intuition that transparent signatures share all their type
fields with another pre-existing module, and therefore all abstract type variables have always
already been introduced.

M-Typ-Sig-GenFct
Γ ⊢ S : λα.C

Γ ⊢ ()→ S : ()→ ∃▼α.C

Generative functors Here, the abstract types α intro-
duced by the codomain of the functor are not extruded in
front of the whole signature. Instead, they are left as an

62 CHAPTER 4. Mω

M-Sub-Sig-Struct
D0 ⊆ D Γ ⊢ D0 < D

′

Γ ⊢ sig D end < sig D′
end

M-Sub-Sig-GenFct
Γ, α ⊢ C < C′[α′ 7→ τ]

Γ ⊢ ()→ ∃▼α.C < ()→ ∃▼α′.C′

M-Sub-Sig-AppFct
Γ, α′ ⊢ C′a < Ca[α 7→ τ] Γ, α′ ⊢ C[α 7→ τ] < C′

Γ ⊢ ∀α.Ca → C < ∀α′.C′a → C′

(a) Subtyping rules for signatures

M-Sub-Decl-Val
Γ ⊢ (val x : τ) < (val x : τ)

M-Sub-Decl-Type
Γ ⊢ (type t = τ) < (type t = τ)

M-Sub-Decl-Mod
Γ ⊢ C < C′

Γ ⊢ (module X : C) < (module X : C′)

M-Sub-Decl-ModType
Γ, α ⊢ C < C′ Γ, α ⊢ C′ < C

Γ ⊢ (module type T = λα.C) < (module type T = λα.C′)

(b) Subtyping rules for declarations. Subtyping between lists of declaration is just a map.

Figure 11: Mω– Subtyping rules (signatures and declarations)

opaque existential signature ∃▼α.C for the functor codomain.
Indeed, every instantiation of the functor should generate new
(incompatible) abstract types α, as required for generativity.

Applicative functors By contrast, applicative functors should not be assigned a signa-
ture of the form ∀α.C → ∃▼β.C′ where all applications would produce new abstract types,
nor λβ.∀α.C → C′ where all applications would share the same types regardless of their ar-
gument. Instead, the following rule follows the solution of Biswas [1995] and reused in Russo
[2004] and F-ing (Rossberg et al. [2014]):

M-Typ-Sig-AppFct
Γ ⊢ Sa : λα.Ca Γ, α, Y : Ca ⊢ S : λβ.C

Γ ⊢ (Y : Sa)→ S : λβ′.∀α.Ca → C
[
β 7→ β′(α)

]
That is, we use higher-order abstract types β′ and apply each β′ to the universally quantified
variables α to capture the fact that each abstract type β′ is some type function of the argu-
ments. This gives a signature of the form λβ′.∀α.C → C

[
β 7→ β′(α)

]
. This extrusion out of an

arrow type and out of a universal binder is called skolemization and was first introduced by
Biswas [1995] for higher-order functors. Here, it is merely a manipulation of types and signa-
tures that does not pose a challenge for type soundness. In a sense, we can manipulate types
in any way as long as they remain wellformed. One key technical aspect of Mω is to justify a
similar skolemization but for the type of module expressions, as described in Section 4.4.

Here and until Section 4.2, Mω applicative functor have a type-level applicativity, like
Moscow ML: the abstract types β′ of the codomain depend on the abstract types α of
the parameter, not on the whole module. We explain how to change it to module-level
applicativity as in OCaml in Section 4.2.

4.1.3 Subtyping

The subtyping judgment Γ ⊢ C < C′ and its helper judgment Γ ⊢ D < D′ check that a signa-
ture C is more restrictive than a signature C′. In practice, this boils down to C having more

4.1. THE Mω TYPE SYSTEM 63

fields and introducing fewer abstract types than C′. Intuitively, it can be understood as “there
are less modules with the signature C than with the signature C′ ”. Overall, subtyping in Mω

is a combination of three orthogonal mechanisms:
• structural subtyping between record types, including deletion and reordering of fields.
• subtyping between function types: covariant on their codomains and contravariant on

their domains.
• subtyping between universal types and between existential types via instantiation. Orig-

inally introduced as the (sub) rule for “type containment” in Mitchell [1988], or some-
times called subtyping à la F η, it allows partial instantiation of polymorphic types.

The full set of subtyping rules is given in Figure 11 and discussed below.

Structural signatures The key rule is the comparison of two structural signatures:

M-Sub-Sig-Struct
D0 ⊆ D Γ ⊢ D0 < D

′

Γ ⊢ sig D end < sig D′
end

A subset D0 of the fields D of the left-hand side signature is matched and subtyped against
the full set of fields of the right-hand side signature D′. This subset D0 can be reordered and
does not have to contain all the fields of the right-hand side signature. Algorithmically, it is
easy to find D0 from the combination of D and D′: for each declaration of D′, we must find
a corresponding declaration in D with the same identifier, and there exists at most one, since
identifiers are pairwise distinct in a structural signature.

Declarations Subtyping between declarations boils down to a matching of definitions, as
we assume no subtyping on the core language. The identifiers always have to be the same on
both sides. For values and type declarations, we have:

M-Sub-Decl-Val
Γ ⊢ (val x : τ) < (val x : τ)

M-Sub-Decl-Type
Γ ⊢ (type t = τ) < (type t = τ)

Subtyping propagates down to submodules, which gives the following rule:

M-Sub-Decl-Mod
Γ ⊢ C < C′

Γ ⊢ (module X : C) < (module X : C′)

There are several possible choices for the subtyping rule between two module type fields.
In F-ing (Rossberg et al. [2014]), they have a relaxed rule where they require subtyping in
both directions between the two definitions: it only allows for a different ordering of the
same set of fields between the two definitions. We could also make the rule more restricted,
requiring the same signature (up to Mω signature equivalence defined in Section 4.1.1) on
both sides. OCaml uses a criterion that is in-between, requiring code-free subtyping between
the two declarations. It makes sense when the names of the fields are kept in the resulting
signature: changing the definition of type t = u when there are occurrences of t remaining in
the signature should only be allowed if the change of definition is code-free. This is discussed
for ZipML in Section 5.3.5. In Mω, definitions are inlined, so changing the definition does not
affect the rest of the signature. Yet, for coherence we reuse the same criterion.

M-Sub-Decl-ModType
Γ, α ⊢ C < C′ Γ, α ⊢ C′ < C ⌊C⌋ = ⌊C′⌋

Γ ⊢ (module type T = λα.C) < (module type T = λα.C′)

64 CHAPTER 4. Mω

Where define the dynamic part of C, written ⌊C⌋, as a pseudo-untyped signature:

⌊()→ ∃▼α.C⌋ ≜ ()→ C
⌊∀α.Ca → C⌋ ≜ ⌊Ca⌋ → ⌊C⌋
⌊sig D end⌋ ≜ sig ⌊D⌋ end

⌊valx : _ ⌋ ≜ val x
⌊moduleX : C⌋ ≜ moduleX : ⌊C⌋
⌊type t = _ ⌋ ≜ ∅

⌊module type T = _ ⌋ ≜ ∅

The equality between dynamic parts is purely syntactic.

Generative functors The rule for generative functors M-Sub-Sig-GenFct shows the mech-
anism of subtyping by instantiation of quantifiers:

M-Sub-Sig-GenFct
Γ, α ⊢ C < C′[α′ 7→ τ]

Γ ⊢ ()→ ∃▼α.C < ()→ ∃▼α′.C′

It can be read as a two-step process, where we first check the subtyping between ∃▼α.C and
∃▼α′.C′, which in turn amounts to finding an instantiation of α′ by some type τ ′ (that might
use the α). While this is one of the standard ways of specifying subtyping for existential types,
as done in Mitchell [1988]; Russo [2004]; Rossberg et al. [2014], it quite permissive, as it does
not require both sets of variables to be the same. However, it is algorithmically challenging
in the presence of higher-order abstract types, and could potentially lead to undecidability of
subtyping.

This problem has already been identified in the literature Biswas [1995]; Russo [2004];
Rossberg et al. [2014]. We reuse the argument with the terminology of F-ing (Rossberg et al.
[2014]), which we sum-up below. Decidability follows from the fact that subtyping Γ ⊢ C < C′
is actually only checked when the right-hand-side signature C′ has an additional property that
makes the instantiation easy to compute.

More precisely, they define:
• rooted type variables: Let us first consider a type variable α of kind ⋆. We say that α is

rooted in a signature C′ if the signature contains a type field of the form type t = α in a
strictly positive position. The key observation is that rooted type variables can be easily
instantiated during subtyping. Indeed, for the subtyping to succeed, there have to be
some corresponding type field of the form type t = τ with the same identifier t occurring
in a strictly positive part of C. From the non-variance of declaration subtyping, we know
that the only possible instantiation of α has to be τ . Therefore, the instantiation can
be found for rooted type variables, using the two signatures C and C′.
This argument extends to higher-order types. For functors with one argument, a type
variable φ is rooted in ∀α.Ca → C if C contains a type field of the form type t = (φα)
in a strictly positive position. Again, the left-hand-side signature C must have a corre-
sponding type field of the form type t = τ . Therefore, the only possible instantiation
of φ is λα.τ
For several arguments, the set of type variables α has to be the concatenation of all
universally quantified variables from the different levels of functors.

• explicit signatures are signatures where all quantified abstract types are rooted. Signa-
tures obtained by elaboration from source signatures are always explicit signatures.

• valid signatures are signatures where all functors have an explicit signature on the left-
hand side of the arrow.

From there, they show that typechecking only produces valid signatures, and that subtyping
is only checked with an explicit signature on the right-hand side and a valid signature on the
left-hand side.

An interesting consequence is that decidability of subtyping (and therefore, decidability
of typechecking) crucially relies on the fact that the elaboration of source signatures always

4.1. THE Mω TYPE SYSTEM 65

produces explicit signatures. If we where to allow the user to input non-explicit signatures
– either with an unrestricted module type of construct, or directly in Mω-signatures syntax
– we would lose decidability. This hints at the fact that ML-modules are not just merely a
mode of use of Fω (as written in F-ing (Rossberg et al. [2014])), but also a sweet spot, where
changes seen as minor from Mω could easily break decidability.

Applicative functors Subtyping between functors combines both instantiation and sub-
typing between arrow types:

M-Sub-Sig-AppFct
Γ, α′ ⊢ C′a < Ca[α 7→ τ] Γ, α′ ⊢ C[α 7→ τ] < C′

Γ ⊢ ∀α.Ca → C < ∀α′.C′a → C′

As usual, subtyping is contravariant for the argument of applicative functors. The same
instantiation [α 7→ τ] is used for both the domain and codomain.

4.1.4 Module Expressions type-checking

Typechecking of expressions Γ ⊢ M : ∃♢α.C infers an Mω-signature ∃♢α.C given a source mod-
ule M. Technically, the judgment should be read Γ ⊢♢ M : ∃♢α.C where the opacity flag on the
judgment is a typing mode that is the same as the opacity mode of the existential quantifier.
As we use opacity flags as modes, we also refer to the opaque flag ▼ as the generative mode,
and to the transparent flag ▽ as the applicative mode.

To lighten the notation, we usually omit the mode on the judgment except when it is
generative and there is no existential type to enforce it. Thus, when we write Γ ⊢ M : ∃▼∅.C
or Γ ⊢ M : ∃▽∅.C when α is empty, we actually mean Γ ⊢▼ M : C and Γ ⊢▽ M : C. The same
convention applies to typing rules for bindings M-Typ-Decl-*. Typing rules for module
expressions and bindings are given in Figure 12.

Skolemization The rule for applicative functors is a crucial one:

M-Typ-Mod-AppFct
Γ ⊢ Sa : λα.Ca Γ, α, (Y : Ca) ⊢ M : ∃▽β.C

Γ ⊢ (Y : Sa)→ M : ∃▽β′.∀α.Ca → C
[
β 7→ β′(α)

]
In order to share the abstract types β produced by the inference of the body of the functor M,
we skolemize them out of the universal quantification (and out of the arrow type) by making
them higher-order, and applying them to the universally quantified variables α. However, this
is unsound when the abstract types are opaque existential types. We thus enforce transparent
existential types for the body of the functor. The technical reasons behind this restriction are
detailed in Section 4.4. In a nutshell, skolemization of transparent existential types is always
sound, and applicative functor only need this restricted form of existentials.

One might wonder why the corresponding rule M-Typ-Sig-AppFct for typing signatures
of applicative functors does not feature a similar restriction. The key difference is that typing
of signatures is just a mere manipulation of types where everything is possible, as long as the
resulting signatures are wellformed. By contrast, for the typing of module expressions, the
soundness relies on the ability to actually produce a term of the corresponding type in Fω.

Propagation of modes Signatures with transparent existentials are inferred by default
and are required for the body of applicative functors, as seen above. Module expressions
that are inherently generative, such as calling generative functors or computing impure core

66 CHAPTER 4. Mω

expressions (or unpacking first-class modules), can only be typed with opaque existential
signatures, in generative mode:

M-Typ-Mod-GenFct
Γ ⊢ M : ∃▼α.C

Γ ⊢ ()→ M : ()→ ∃▼α.C

M-Typ-Mod-AppGen
Γ ⊢ P : ()→ ∃▼α.C

Γ ⊢ P () : ∃▼α.C

Modules can be downgraded from applicative to generative via subsumption, but not the other
way around:

M-Typ-Mod-Seal
Γ ⊢ M : ∃▽α.C
Γ ⊢ M : ∃▼α.C

All other rules are agnostic of the typing mode. With the convention that M-Typ-Mod-
Seal is only used when the generative mode is required for the premise of another rule, i.e.,
applicative signatures are inferred by default, the system is syntax directed.

Structures are regular, i.e., all bindings have the same mode. This is enforced by the
Rule M-Typ-Bind-Seq for sequences, where the mode must be the same on both premises:

M-Typ-Mod-Struct
Γ ⊢A B : ∃♢α.D A /∈ Γ

Γ ⊢ structA B end : ∃♢α.sig D end

M-Typ-Bind-Seq
Γ ⊢A B : ∃♢α1.D Γ, α1, A.D ⊢A B : ∃♢α.D

Γ ⊢A B, B : ∃♢α1, α.D,D

Bindings The rules for bindings assume a given core-language expression typing judgment
Γ ⊢♢ e : τ equipped with a mode that tracks the presence of effects. As explained in Sec-
tion 2.2.2, it is not present in current OCaml, where it is the user’s responsibility to use
generative functors in such cases:

M-Typ-Bind-Let
Γ ⊢♢ e : τ

Γ ⊢A♢ (letx = e) : (val x : τ)

M-Typ-Bind-Type
Γ ⊢ u : τ

Γ ⊢A♢ (type t = u) : (type t = τ)

M-Typ-Bind-Mod
Γ ⊢ M : ∃♢α.C

Γ ⊢A (moduleX = M) : (∃♢α.module X : C)

M-Typ-Bind-ModType
Γ ⊢ S : λα.C

Γ ⊢A (module type T = S) : (module type T = λα.C)

The core-language expression typing is extended by the following rules for qualified variables:

M-Typ-Type-Path
Γ ⊢ P : sig D end val x : τ ∈ D

Γ ⊢♢ P.x : τ

M-Typ-Type-Local
A.val x : τ ∈ Γ

Γ ⊢♢ A.x : τ

Paths The typing of paths, which may contain applications of applicative functors, is defined
by the following rules:

M-Typ-Mod-Var
(Y : C) ∈ Γ

Γ ⊢ Y : C

M-Typ-Mod-Local
(A.X : module C) ∈ Γ

Γ ⊢ A.X : C

M-Typ-Mod-AppApp
Γ ⊢ P : ∀α.Ca → C Γ ⊢ P ′ : C′ Γ ⊢ C′ < Ca[α 7→ τ] Γ ⊢ τ : κ

Γ ⊢ P (P ′) : C[α 7→ τ]

There is an implicit subtyping check at functor application.

4.2. IDENTITY, ALIASING, AND TYPE ABSTRACTION 67

Introduction of abstract types Ascription to a signature S that elaborates to a para-
metric signature λα.C returns a signature ∃▽α.C with transparent abstract types:

M-Typ-Mod-Ascr
Γ ⊢ P : C Γ ⊢ S : λα.C′ Γ ⊢ C < C′[α 7→ τ] Γ ⊢ τ : κ

Γ ⊢ (P : S) : ∃▽α.C′

This rule has some resemblance with Rule M-Typ-Sig-Trans for typechecking a transparent
signature (= P < S): in both cases, we check that the Mω signature of P is a subtype of
the Mω-signature λα.C′ of S. By contrast, however, we here drop the matching substitution
in the result signature ∃▽α.C′ and instead introduce the abstract types α. If the signature is
not parametric, i.e., does not bind abstract types, the result does not introduce new abstract
types either. In particular, transparent ascription (P <: S), which is syntactic sugar for (P :
(= P < S)), i.e., the opaque ascription of P to the transparent signature (= P < S), behaves
as expected, filtering out components of P as prescribed by S but without creating new
abstract types. Note that applications of an applicative functor (Rule M-Typ-Mod-AppApp)
do not introduce new abstract types per se, but applications of already existing higher-order
abstract types – which is the key to the sharing between different applications of the same
(or an equivalent) functor to the same (or equivalent) arguments.

The only other construct that introduces abstract types is abstract-type binding:

M-Typ-Bind-AbsType
Γ ⊢A (type t = A.t) : ∃♢α.(type t = α)

Projection and signature avoidance As explained in Section 2.3, typechecking the pro-
jection of a submodule M.X is often a source of signature avoidance: the dependencies of the
source signature of X might become dangling after the other components of the signature
of M have been lost. However, Mω signatures do not have internal dependencies; they are
non-dependent records, as all paths present in concrete type definitions have been inlined and
binders for abstract types have been lifted. This gives a simple projection rule:

M-Typ-Mod-Proj
Γ ⊢ M : ∃♢α.sig D end module X : C ∈ D (fv(C) ∩ α) ⊆ α′

Γ ⊢ M.X : ∃♢α′.C

In principle, the Rule M-Typ-Mod-Proj could return the signature ∃♢α.C, leaving all vari-
ables in scope after projection. However, it also performs some form of garbage collection by
just keeping the subset α′ of abstract types α that appear free in the submodule signature C
so as to avoid keeping useless, unreachable abstract types.

4.2 Identity, Aliasing, and Type Abstraction

So far, our system handles applicativity with a type-level granularity of applicativity, as
promoted by Moscow ML Russo [2001] and F-ing (Rossberg et al. [2014]). In this section,
we present the introduction of identity types in a simple source-to-source transformation as
a way to piggy-back the OCaml module-level granularity on top of type-level applicativity.
We also present a derived type-system that treats module-level applicativity in a primitive
way. Finally, we state and prove a property of identity types that hints at abstraction safety
(without obtaining it).

4.2.1 A source-to-source transformation

As explained in Section 2.2.2, applicativity of functors relies on a criterion for module equiv-
alence that gives rise to three notions of applicativity:

68 CHAPTER 4. Mω

M-Typ-Mod-Var
(Y : C) ∈ Γ

Γ ⊢ Y : C

M-Typ-Mod-Local
(A.X : module C) ∈ Γ

Γ ⊢ A.X : C

M-Typ-Mod-Seal
Γ ⊢ M : ∃▽α.C
Γ ⊢ M : ∃▼α.C

M-Typ-Mod-Struct
Γ ⊢A B : ∃♢α.D A /∈ Γ

Γ ⊢ structA B end : ∃♢α.sig D end

M-Typ-Mod-Ascr
Γ ⊢ P : C Γ ⊢ S : λα.C′ Γ ⊢ C < C′[α 7→ τ] Γ ⊢ τ : κ

Γ ⊢ (P : S) : ∃▽α.C′

M-Typ-Mod-AppFct
Γ ⊢ Sa : λα.Ca Γ, α, (Y : Ca) ⊢ M : ∃▽β.C

Γ ⊢ (Y : Sa)→ M : ∃▽β′.∀α.Ca → C
[
β 7→ β′(α)

]
M-Typ-Mod-GenFct

Γ ⊢ M : ∃♢α.C
Γ ⊢ ()→ M : ()→ ∃▼α.C

M-Typ-Mod-AppApp
Γ ⊢ P : ∀α.Ca → C Γ ⊢ P ′ : C′ Γ ⊢ C′ < Ca[α 7→ τ]

Γ ⊢ P (P ′) : C[α 7→ τ]

M-Typ-Mod-AppGen
Γ ⊢ P : ()→ ∃▼α.C

Γ ⊢ P () : ∃▼α.C

M-Typ-Mod-Proj
Γ ⊢ M : ∃♢α.sig D end module X : C ∈ D (fv(C) ∩ α) ⊆ α′

Γ ⊢ M.X : ∃♢α′.C

(a) Module expression (and path) typing rules

M-Typ-Bind-Let
Γ ⊢♢ e : τ

Γ ⊢A♢ (letx = e) : (val x : τ)

M-Typ-Bind-Type
Γ ⊢ u : τ

Γ ⊢A♢ (type t = u) : (type t = τ)

M-Typ-Bind-AbsType
Γ ⊢A (type t = A.t) : ∃♢α.(type t = α)

M-Typ-Bind-Mod
Γ ⊢ M : ∃♢α.C

Γ ⊢A (moduleX = M) : (∃♢α.module X : C)

M-Typ-Bind-ModType
Γ ⊢ S : λα.C

Γ ⊢A (module type T = S) : (module type T = λα.C)

M-Typ-Bind-Empty
Γ ⊢A ∅ :∅

M-Typ-Bind-Seq
Γ ⊢A B : ∃♢α1.D Γ, α1, A.D ⊢A B : ∃♢α.D

Γ ⊢A B, B : ∃♢α1, α.D,D

(b) Binding typing rules

M-Typ-Type-Path
Γ ⊢ P : sig D end val x : τ ∈ D

Γ ⊢♢ P.x : τ

M-Typ-Type-Local
A.(x : val τ) ∈ Γ

Γ ⊢♢ A.x : τ

(c) Extension of core-language expression typing

Figure 12: Module and binding typing rules.

4.2. IDENTITY, ALIASING, AND TYPE ABSTRACTION 69

Tagging
Tag {M} ≜ structA module Val = M type id = A.id end

Tag {S} ≜ sigA module Val : S type id = A.id end

Paths
JA.XK ≜ A.X JP.XK ≜ JP K.Val.X

JY K ≜ Y
q
P (P ′)

y
≜ JP K.Val(

q
P ′y)

Module expressions
JM.XK ≜ JMK .Val.X JP ()K ≜ JP K .Val()

J(P : S)K ≜ (JP K : JSK)

J()→ MK ≜ Tag {()→ JMK}
J(Y : S)→ MK ≜ Tag {(Y : JSK)→ JMK}

q
structA B end

y
≜ Tag

{
structA

q
B
y
end

}

Signatures
JA.T K ≜ A.T JP.T K ≜ JP K.Val.T

J(= P < S)K ≜ (= JP K < JSK)

J()→ SK ≜ Tag {()→ JSK}
J(Y : Sa)→ SK ≜ Tag {(Y : JSaK)→ JSK}
q
sigA D end

y
≜ Tag

{
sigA

q
D
y
end

}
Figure 13: Source-to-source transformation introducing identity tags for structures and func-
tors using two reserved identifiers id and Val. Bindings and declarations and types are
transformed by immediate map over submodules and submodule-types.

• type-level applicativity : the two modules have the same type fields
• value-level applicativity : the two modules have the same type and value fields
• module-level applicativity : the two modules are statically known as being equal

To obtain the abstraction safety provided by the last two options, Rossberg et al. [2014]
introduced semantic paths: tagging value and module fields with phantom abstract types
and using the type sharing mechanism to track value or module sharing. Then, type-level
applicativity can be transformed into either value level or module-level (à la OCaml) by
marking either all values or only modules.

However, as phantom abstract types act exactly as regular abstract types, we can split the
introduction of those types from the typing. We propose a simple, compositional source-to-
source transformation that explicitly introduces special abstract type fields id, called identity
tag in Figure 13. We call tagged expressions those resulting from the transformation, so as
to distinguish them from raw (untagged) expressions. Structures and functors are wrapped
inside a two-field structure with its identity tag and the actual value. New (abstract) identity
tags are introduced when typing structures and functors, or via an ascription. Conversely,
identity tags are shared when aliasing a module.

Controlling the applicativity granularity by a source-to-source transformation allows for a
simpler set of typing rules. Besides, it leaves open the choice to apply the transformation so
as to obtain OCaml coarse-grain granularity (and abstraction safety), or just stay with the
default static equivalence.

Example 4.2.1. An example of the source-to-source transformation. For readability, the
result of the transparent ascriptions has been inlined to display the equality of identity types.

70 CHAPTER 4. Mω

Source code

1 moduleX = structA type t = A.t end
2 moduleX ′ = (X < sig end)
3 moduleF = (Y : sigA end)→ (Y < sig end)

Transformed code

1 moduleX = structB type id = B.id module Val = structA type t = A.t end end

2 moduleX ′ = structB type id = B.id module Val = (X.Val < sig end) end
3 moduleF = (Y : sigA type id = A.id module Val : sig end end)→
4 structA type id = Y.id module Val = (Y.Val < sig end) end

4.2.2 Derived typing system

The source-to-source transformation could also be inlined, introducing phantom identity types
during type-checking, as in F-ing (Rossberg et al. [2014]). This would affect the rules that
“create” new modules, i.e., the rules for structures and functors. In the following, we write
the tagged structures with a pair for sake of conciseness:

(αid, C) ≜ sig type id = αid module Val : C end

We get the following derived rules for typing of module expressions:
M-Typ-Mod-Struct

Γ ⊢A B : ∃♢α.D A /∈ Γ

Γ ⊢ structA B end : ∃♢αid, α.(αid, sig D end)

M-Typ-Mod-AppFct
Γ ⊢ Sa : λα.Ca Γ, α, (Y : Ca) ⊢ M : ∃▽β.C

Γ ⊢ (Y : Sa)→ M : ∃▽αid, β′.(αid,∀α.Ca → C
[
β 7→ β′(α)

]
)

M-Typ-Mod-GenFct
Γ ⊢ M : ∃♢α.C

Γ ⊢ ()→ M : ∃▽αid.(αid, ()→ ∃▼α.C)

Signature elaboration would be modified similarly, introducing parameterized abstract types
for structures and functors. The rest of the type system would not be affected, only dealing
with tagged signatures (αid, C) rather than plain signatures C in some of the rules. As ex-
plained before, the identity tags act exactly as normal type fields. Therefore, subtyping on
identity tags would be restricted to type equivalence, as it is already the case for other type
fields.

4.2.3 Property of identity tags

Identity tags are introduced for new modules, then shared when a module is aliased, either
directly or via a transparent ascription. Therefore, if two modules share the same identity tag,
they originate from a common ancestor with a better signature, as stated by the following
theorem:

Theorem 1: Identity tags

Two module expressions that share the same identity tag originate from a common an-
cestor with a more precise signature. Namely,

Γ ⊢ JM1K : sig module Val : C1 type id = τ end

Γ ⊢ JM2K : sig module Val : C2 type id = τ end

implies
∃C0, Γ ⊢ C0 < C1 ∧ Γ ⊢ C0 < C2

4.2. IDENTITY, ALIASING, AND TYPE ABSTRACTION 71

That is, M1 and M2 originate from a common module, of signature C0 that subsumes
both C1 and C2.

The rest of this section is dedicated to the proof of this theorem. First, we consider a
slightly modified system called Mω

<: based on Fω extended with bounded quantification. We
identify Mω types and Mω signatures and use τ and C interchangeably in this section. The
system Mω

<: is built from Mω as follows:

1. We extend the quantifiers ∃♢, ∀, and λ to support bounded quantification for abstract
types that serve as identities (the other types being bound by the top bound ⊤).

2. We modify the typing and subtyping rules accordingly. Omitting the rules that either
do not feature bounds or simply thread them from the premise to the conclusion, only
three typing rules are affected, and now feature an additional subtyping condition in
their premises (yellow background is used to emphasize the differences):

MS-Typ-Sig-Con

Γ ⊢ P : C Γ ⊢ S : λ(α < τ ′).C′ Γ ⊢ C < C′[α 7→ τ] Γ ⊢ τ : κ Γ ⊢ τ < τ ′

Γ ⊢ (= P < S) : C′[α 7→ τ]

MS-Typ-Mod-Ascr

Γ ⊢ P : C Γ ⊢ S : λ(α < τ ′).C′ Γ ⊢ C < C′[α 7→ τ] Γ ⊢ τ : κ Γ ⊢ τ < τ ′

Γ ⊢ (P : S) : ∃▽(α < τ ′).C′

MS-Typ-Mod-AppApp
Γ ⊢ P : ∀(α < τ ′).Ca → C

Γ ⊢ P ′ : C′ Γ ⊢ C′ < Ca[α 7→ τ] Γ ⊢ τ : κ Γ ⊢ τ < τ ′

Γ ⊢ P (P ′) : C[α 7→ τ]

3. We modify the typing rules for introducing abstract types (MS-Typ-Decl-TypeAbs and
MS-Typ-Bind-AbsType) by distinguishing identity tags (MS-Typ-Decl-TypeAbsId and
MS-Typ-Bind-AbsTypeId) from other abstract types. While abstract types are simply
bound by ⊤, identity tags are bound by the signature of the associated value.

MS-Typ-Decl-TypeAbs
t ̸= id

Γ ⊢A (type t = A.t) : λ(α < ⊤).(type t = α)

MS-Typ-Decl-TypeAbsId
Γ ⊢ A.Val : C

Γ ⊢A (type id = A.id) : λ(α < C).(type id = α)

and, similarly:
MS-Typ-Bind-AbsType

t ̸= id

Γ ⊢A (type t = A.t) : ∃♢(α < ⊤).(type t = α)

MS-Typ-Bind-AbsTypeId
Γ ⊢ A.Val : C

Γ ⊢A (type id = A.id) : ∃♢(α < C).(type id = α)

4. Subtyping is extended with a new rule MS-Sub-Bound for subtyping applied higher-
order bound variables (MS-Sub-Bound-Star is just a particular case of MS-Sub-Bound):

MS-Sub-Bound
φ < λ(α < τ ′).C ∈ Γ Γ ⊢ τ < τ ′

Γ ⊢ (φ τ) < C[α 7→ τ]

MS-Sub-Bound-Star
α < C ∈ Γ

Γ ⊢ α < C

72 CHAPTER 4. Mω

Besides, the two following rules for subtyping between functors are also extended with
additional premises to ensure the correct instantiation of abstract types:

MS-Sub-Sig-GenFct

Γ, α < τ ⊢ C < C′[α′ 7→ τ1] Γ, α < τ ⊢ τ1 < τ ′

Γ ⊢ ()→ ∃▼(α < τ).C < ()→ ∃▼(α′ < τ ′).C′

MS-Sub-Sig-AppFct

Γ, α′ < τ ′ ⊢ C′a < Ca[α 7→ τ1] Γ, α′ < τ ′ ⊢ C[α 7→ τ1] < C′ Γ, α′ < τ ′ ⊢ τ1 < τ

Γ ⊢ ∀(α < τ).Ca → C < ∀(α′ < τ ′).C′a → C′

Crucially, subtyping in Mω
<: remains transitive.

The proof then proceeds in two steps:

1. We first show that Mω
<: maintains a stronger notion of wellformedness called identity

wellformedness: if Γ ⊢ sig type id = τ module Val : C end then Γ ⊢ τ < C (1). To do so,
we reinforce wellformedness for identity tags by changing the rule to

Γ ⊢ C : wf Γ ⊢ τ < C
Γ ⊢ sig type id = τ module Val : C end : wf

This defines a stronger wellformedness judgment Γ ⊢ C : wfid. We show that Mω
<: typing

judgments for modules and signatures always produce signatures that preserves identity-
tag wellformedness. That is, assuming ⊢ Γ : wfid, then if either Γ ⊢ S : λ(α < C).C′ or
Γ ⊢ M : ∃♢(α < C).C′ holds, then Γ, α < C ⊢ C′ : wfid also holds.

Therefore, we may restrict Mω
<: derivations to use the identity-tag wellformedness in-

variant as long as we start with an identity-tag wellformed environment. By inversion
of wellformedness, this ensures the invariant (1).

2. Using the previous invariant, we then show that typability in Mω implies typability
in Mω

<:.

The proof of the first step proceeds by a simple induction over the typing derivation: identities
are either introduced fresh, in which case the bound is equal to the signature of the corre-
sponding Val-field, or obtained via subtyping, in which case we use transitivity of subtyping.

The rest of this section is dedicated to the proof of the second step. The only differences
between the original and the enhanced typing systems are the addition of subtyping bounds
and subtyping relations between the bounds. The core of the proof is to show that these are
actually not restrictive, which follows from two key facts: (1) subtyping is only done with a
right-hand side signature that comes from a source signature, i.e., that is the result of typing
a source signature; and (2) such signatures always contain the bounds of their identity tags
in at least one positive occurrence.

Properties of elaborated signatures An Mω signature that is the elaboration of a source
signature (referred to as TSS for Tagged Source Signature in the following) has actually a
stronger property than being just identity-wellformed. In a TSS, the bound of an identity
tag α is exactly the signature C of the first module occurrence with an identity tag α, and
therefore, the bound always appears explicitly in the signature. By contrast, in signatures
that are just identity-wellformed (like the result of inference), there might be no module with
the same signature as the bound, but only supertypes.

4.2. IDENTITY, ALIASING, AND TYPE ABSTRACTION 73

First-order example Before diving into the proof by induction, we consider the typing of
a basic source signature S:

Γ ⊢ S : λ(α < Cα).C

There must be a subterm of C at a positive occurrence that is equal to:

sig module Val : Cα type id = α end

When subtyping this signature with another one in the enhanced system,

Γ ⊢ λ(α < Cα).C < λ(β < Cβ).C′

there is a new subtyping check between the bounds:

Γ ⊢ Cβ < Cα (1)

Whenever the subtyping between C′ and C succeeded in Mω, C′ features a subterm of the
form

sig module Val : C0 type id = β end

By subtyping, we have Γ ⊢ C0 < Cα. Thanks to the invariant of the first part of the proof, we
know that Γ ⊢ Cβ < C0. Transitivity of subtyping ensures (1). Hence subtyping also succeeds
in Mω

<:.

Proof by induction We prove by induction over the typing derivation that typing and
subtyping in Mω implies typing and subtyping in Mω

<:. Cases for unchanged rules, or rules
that just thread the bounds from the premise to the conclusion are immediate. The only
interesting cases are the three typing rules and two subtyping rules shown above that have
an additional premise. In each case, we prove that this additional premise is actually implied
by the other premises.

Typing M-Typ-Sig-Trans. The Mω derivation ends with the following rule.

M-Typ-Sig-Trans
Γ ⊢ P : C Γ ⊢ S : λα.C′ Γ ⊢ C < C′[α 7→ τ] Γ ⊢ τ : κ

Γ ⊢ (= P < S) : C′[α 7→ τ]

For simplification of presentation, we assume that α is a single variable α. We show that we
can rebuild a Mω

<: derivation:

MS-Typ-Sig-Con
Γ ⊢ P : C

Γ ⊢ S : λ(α < τ ′).C′ Γ ⊢ C < C′[α 7→ τ] (2) Γ ⊢ τ : κ Γ ⊢ τ < τ ′ (3)

Γ ⊢ (= P < S) : C′[α 7→ τ]

All the premises but (3), hence including (2), follow by induction hypothesis. The remaining
goal is to show that the additional condition (3) actually follows from (2). For this purpose,
we define [C]+, the positive declarations of a signature C, as the flattened list of declarations in
strict positive positions inside C (without entering inside generative functors or module-types),
taken in the usual binding order, as follows:

[sig D end]+ = [D]+ (Structural signature)

[∀α.Ca → C]+ = ∀α.[C]+ (Applicative functor)

[()→ _]+ = ∅ (Generative functor)

[module X : C]+ = (module X : C), [C]+ (Submodule declaration)

[D]+ = D (Other declarations)

74 CHAPTER 4. Mω

Declarations inside applicative functors are universally quantified. A key observation is that
a signature in TSS form always contains the bound of its identity type among its positive
declarations:

Γ ⊢ S : λ(α < τ).C =⇒ (module Val : τ) ∈ [C]+ ∧ type id = α ∈ [C]+

Γ ⊢ S : λ(α < λβ.τ).C =⇒ ∀β.(module Val : τ) ∈ [C]+ ∧ ∀β.type id = (αβ) ∈ [C]+

Crucially, all the instantiations we consider feature a TSS C′ on their right-hand side. By con-
struction, subtyping between two signatures C and C′ implies subtyping between declarations
at any positive occurrence in C and its corresponding declaration in C′. Ignoring applicative
functors at first, this would give:

Γ ⊢ C < C′ =⇒ ∀D′ ∈ [C′]+. ∃D ∈ [C]+. Γ ⊢ D < D′

But there is a catch: the declarations D and D′ might be deep inside the signature, and
therefore the subtyping between them might be true only in an extended environment Γ′.
The correct statement is therefore:

Γ ⊢ C < C′ =⇒ ∀D′ ∈ [C′]+. ∃D ∈ [C]+,Γ′. Γ′ ⊢ D < D′ ∧ Γ′ < Γ

More specifically, there exists a declaration in the positive part of C that is a subtype of the
explicit bound of α, which appears in [C′]+. That is,

∃C0. Γ′ ⊢ module Val : C0 < module Val : τ ′

This implies Γ′ ⊢ C0 < τ ′. Using the invariant of the first step of the proof, we get Γ′ ⊢ τ < C0,
which implies (3) by transitivity of subtyping and weakening of the environment. This argu-
ment applies to the three adjusted typing rules. It extends to higher-order declarations with
universal quantification only adding universally quantified variables in the typing context Γ.

Typing rules MS-Typ-Mod-Ascr and MS-Typ-Mod-AppApp. The former is exactly the
same as the previous case. For the latter, the only change if that the bounded quantification
λ(α < τ ′).C′ is being replaced by ∀(α < τ ′).C′a → C′.

Subtyping Rule MS-Sub-Sig-AppFct. The same argument as the one used by typing
rules applies, just with an extended context. Restricting again to a single type variable for
the sake of readability, we need to rebuild a derivation in Mω

<: that ends with:

MS-Sub-Sig-AppFct

Γ, α′ < τ ′ ⊢ C′a < Ca[α 7→ τ1] (4) . . . Γ, α′ < τ ′ ⊢ τ1 < τ (5)

Γ ⊢ ∀(α < τ).Ca → C < ∀(α′ < τ ′).C′a → C′

where all the premises but (5) follow by induction hypothesis. As Ca is a TSS, we have

sig type id = α module Val : τ end ∈ [Ca]+

Therefore, since α is not free in τ ,

sig type id = τ1 module Val : τ end ∈ [Ca[α 7→ τ1]]
+

Correspondingly, we must have in C′a, for some signature σ:

sig type id = τ0 module Val : σ end ∈ [C′a]
+
(6)

Subtyping component by component, we have, since subtyping in non-variant on type fields
in general and on identity tag fields in particular:

Γ, α′ < τ ′ ⊢ σ < τ ∧ τ1 = τ0

4.3. REBUILDING SOURCE SIGNATURES 75

The identity-tag wellformedness invariant of (6) implies:

Γ, α′ < τ ′ ⊢ τ0 < σ

By transitivity of subtyping we get Γ, α′ < τ ′ ⊢ τ1 < τ , i.e., (5), as expected.

Rule MS-Sub-Sig-GenFct. We rebuild a derivation of the form

MS-Sub-Sig-GenFct

Γ, α < τ ⊢ C < C′
[
α′ 7→ τ1

]
(7) Γ, α < τ ⊢ τ1 < τ ′ (8)

Γ ⊢ ()→ ∃▼(α < τ).C < ()→ ∃▼(α′ < τ ′).C′

The proof is similar to the previous case where (7) follows by induction and (8) follows from
(7) and the fact that C′ is in TSS-form.

This completes the proof.

4.3 Rebuilding Source Signatures

In this section, we present a reverse translation from Mω signatures back into the source
syntax, called anchoring. It is a partial inverse of signature elaboration. This translation is
necessarily incomplete as some inferred signatures cannot be expressed in the less expressive
source syntax. Crucially, anchoring relies on identity tags, and therefore assumes that we have
tagged source programs as described in Section 4.2 prior to type checking. That is, anchoring
translates tagged signatures back into source (hence untagged) signatures.

In Section 4.3.1, we detail the three expressiveness gaps of the source syntax, which gives
us three anchoring conditions, associated with three new typechecking errors when those con-
ditions are violated. We argue that this classification leads to more understandable signature
avoidance error messages. In Section 4.3.2, we present an anchoring algorithm. In Sec-
tion 4.3.3, we state and prove the properties of this algorithm, which shines a new light on
the differences in the way type-sharing is expressed between Mω and the source syntax.

4.3.1 The Expressiveness Gaps of the Source Syntax

In this section we introduce three anchoring conditions. For each of them, we show examples
of an Mω-signature meeting the condition and explain the error when the condition is not
met. Those error cases constitute a new form of typechecking error that is finer grained than
a simple “avoidance” error. Overall, the anchoring conditions ensure that an Mω-signature
is the result of the elaboration of some source signature, with an additional constraint for
functor applications. We state three anchoring conditions for pedagogical purposes, but the
third one actually subsumes the first two.

For the sake of readability, we do not display all module identities in the examples but
only the ones that are relevant.

Abstract Type Fields

Structural information and introduction of types A first key insight is the difference
in the source syntax between the declaration of a manifest type (type t = u) and that of
an abstract type (type t = A.t). An abstract type declaration type t = A.t in a covariant
position effectively creates a new abstract type (introducing an existential quantifier in Mω)
and adds a type field t to the signature. By contrast a manifest type definition type t = u

only states structural information – adding a field t to refer to the existing type u.

76 CHAPTER 4. Mω

Therefore, in the source syntax, the structural information (name and position of fields)
also determines the scope of abstract types. Conversely, the Mω syntax separates the intro-
duction of new abstract types from the introduction of fields by using explicit quantifiers. In
particular, they may mention an abstract type without (or before) having a type declaration
that refers to it. Overall, anchoring is possible if the structural and scoping information hap-
pen to coincide, i.e., if there is a type declaration type t = α for each type variable α that
“introduces” α in the right scope. As detailed in Section 3.1.1, new scopes are introduced
by generative functors and module-type definitions. This gives the following first anchoring
guideline:

Anchoring Condition 1

The first occurrence of an abstract type variable α must be a type declaration that is:
(1) of the form type t = α, (2) in a strictly positive position, and (3) in the same scope
as the binder of α

If such type declaration exists, it is called the anchoring point of α. If one of the three
conditions is not met, the Mω signature cannot be anchored. This leads to the following error
cases:

(1) If the first occurrence is not a type field (as on the left-hand side), or if does not contain
exactly α (as on the right-hand side):

1 ∃▽α.sig val x : α . . . end 1 ∃▽α.sig type t = α× bool . . . end

(2) If the first occurrence is not in a (strictly) positive position, used in a functor parameter
for instance:

1 ∃♢α.sig module F : (sig type t = α end)→ (sig . . . end) end

(3) The first occurrence is not in the same scope as the binder, either inside a generative
functor or a module-type (we detail the treatment of applicative functor later in this
section), as in:

1 ∃♢α.module G : ()→ sig type t = α end
2 ∃♢α.module type T = sig type t = α end

Related notions This notion is linked to type locators of Dreyer [2007b]; Rossberg and
Dreyer [2013]: the locator is the original anchoring point of α. A key mechanism of anchoring
is to re-discover a new locator, as the original one may have been lost. The notion of anchoring
point is also closely related to the notion of type variable roots in Rossberg et al. [2014]: the
anchoring point of α is a root for α, but the converse is not necessarily true. Type roots are
used to show the decidability of type-checking, but do not have to be the first occurrence.

Example 4.3.1. In the following Mω signature (left-hand side), the first occurrence of α is a
type declaration that can serve as an anchoring point. Therefore, we can anchor the signature
to the right-hand-side source signature:

1 ∃♢α.module M : sig
2 type t = α
3 val x : α
4 type u = α× int

5 end

1 moduleM : sigA
2 type t = A.t
3 valx : A.t
4 typeu = A.t× int
5 end

The type declaration type t = A.t (line 2, right-hand side) is the anchoring point of α.

4.3. REBUILDING SOURCE SIGNATURES 77

Module Identities

The source syntax can only express identity sharing between modules via transparent sig-
natures (= P < S). However, a transparent signature (= P < S) is wellformed only if the
signature of the path P is a subtype of S. This forces all modules sharing the (same) identity
of P to have a signature that is a subtype of (the signature of) the module at P . Therefore,
identity sharing is tied with subtyping conditions between the signature of each occurrence
and the signature of the first occurrence. By contrast, Mω signatures can express identity
sharing regardless of the associated signatures.

Anchoring Condition 2

The first occurrence of an identity tag variable αid must be at a module binding of the
form module X : (αid, C), in a strictly positive position, and in the same scope as the
binder. Besides, all further occurrences of αid, of the form (αid, C′), must be such that
there is subtyping between C and C′.

As a consequence of this condition, anchoring can fail even if all variables have an anchor-
ing point as their first occurrence: we might discover later in the signature that subtyping
conditions are not met. In addition to the three error cases that are similar to type variables,
we have a new error case: if one of the following occurrences of the identity tag variable is
associated with a signature that is not a subtype of the one at the anchoring point:

1 ∃♢αid.module M : sig
2 module X1 : (αid, sig end)
3 module X2 : (αid, sig type t = int end)
4 end

Here, the signature of X1 is not a subtype of the one of X2: sig end ≮ sig type t = int end

Example 4.3.2. In the following Mω-signature (left-hand-side), the first module with the
identity tag serves as the anchoring point for the identity variable αid.

1 ∃♢αid, α.module M : sig
2 module X1 : (αid, sig type t = α end)
3 module X2 : (αid, sig end)
4 end

1 moduleM : sigA
2 moduleX1 : sigA type t = A.t end
3 moduleX2 : (= X1 < sig end)
4 end

All other occurrences of αid (here, only at the module declaration of X2) validate the subtyping
condition, as we have: sig end < sig type t = α end

Higher-order Abstract Types

Let us consider an abstract type t inside an applicative functor:

1 moduleF : (Y : S)→ sigA . . . type t = A.t . . . end

This type field t is reachable by a path with a functor application, of the form F (X).t.
Therefore, the type does not act exactly as a higher-order type, but is restricted to a certain
domain that is limited by the signature of the parameter S. Yet Mω uses a normal higher-order
abstract variable φ to model this type declaration, and φ can be applied to any type argument
(without restriction). For anchoring, we need to replace occurrences of φ by applicative paths
of the form F (X).t, which will introduce subtyping conditions (between the signature of X
and S).

78 CHAPTER 4. Mω

Anchoring Condition 3 (1/2)

The first occurrence of a higher-order abstract type φ must be a type declaration that
is: (1) of the form type t = φ(α), (2) where α is exactly the set of universally quantified
variables in the environment in the current scope, (3) in a strictly positive position and
(4) in the same scope as the binder. Besides, all further occurrences of φ, of the form φ(τ),
must be the result of the elaboration of a (well-formed) path, of the form F (X).t.

Again, this introduces new error cases when the conditions are not met. If a higher-order
abstract type does not have an anchoring point, we say that we have a “lost functor” anchoring
error. Besides the three conditions (first occurrence, strict positivity, same scope) that are
similar to base type variables, we have:

1. If the first occurrence of φ is a type declaration of the form type t = φ(τ), where τ is
not exactly the set of universally quantified variables, it means that φ originates from
a functor with a different arity, and we have an error:

1 ∃♢ φ, αid.sig
2 module X : sig type t = bool end
3 module F : ∀α.(α, sig end)→ sig type t = φ(α, αid) end
4 type t = φ(αid, αid)
5 end

Here, the variable φ was introduced by a functor that took two parameters, and it only
remains a partial application φ(α, αid) in the signature. Even if the rest of the signature
only uses φ in a way that could be emulated using F , i.e., the last field could technically
be anchored as type t = F (X).t, we refuse to do so and throw an error, as it is a form
of over-abstraction.

2. If we have a suitable anchoring point, there might be occurrences further down the
signature that cannot be expressed as paths to the anchoring point, due to the subtyping
conditions.

1 ∃♢ φ, αid.sig
2 module F : ∀α.(α, sig val x : int end)→ sig type t = φ(α) end
3 module X : (αid, sig val x : bool end)
4 type t = φ(αid)
5 end

Here, the type declaration cannot be anchored, as the path F (X).t would be ill-formed.
Indeed, the signature of X is not a subtype of the functor’s parameter, as they differ
on the type of the value field x. Such situation can appear by inference, when φ was
introduced by a functor that was more general than F , i.e., which parameter’s signature
did not contain a field x.

Relation between the three anchoring conditions The condition (1) is a sub-case of
the condition (3), restricted to base types (of the base kind ⋆). The subtyping constraint that
is introduced by condition (2) is similar to the one condition (3). This comes from the fact
transparent ascription can be encoded as functor application: for each signature S, we could
introduce a dummy functor FS : (Y : S) → Y . Each transparent ascription (= P < S) could
be obtained as the result of the application FS(P).

Example 4.3.3. In the following Mω-signature (left-hand side), the anchoring conditions are
met. All occurrences of φ can be anchored as paths to the anchoring point. Those paths can
contain functor parameters, as displayed by F2.

4.3. REBUILDING SOURCE SIGNATURES 79

1 ∃▽ φ, αid.module M : sig
2 module F1 :
3 ∀αid.(αid, sig end)→
4 sig type t = φ(αid) end
5 module X : (αid, sig val x : int end)
6 type t = φ(αid)
7 module F2 :
8 ∀αid.(αid, sig val x : bool end)→
9 sig type t = φ(αid) end

10 end

1 moduleM : sigA
2 moduleF1 :
3 (Y : sig end)→
4 sigB type t = B.t end
5 moduleX : sig val x : int end

6 type t = A.F1(A.X).t
7 moduleF2 :
8 (Y : sig val x : bool end)→
9 sig type t = A.F1(Y).t end

10 end

Disabling functor applications “out of thin air” As discussed in Section 2.3.3, we want
to prevent the anchoring from inventing paths with functor applications that never appeared
in the source, just for referring to abstract types that have lost their original path. Doing
so would be quite surprising, if not misleading, as it would suggest a computation that will
never happen. Therefore, we extend the third anchoring condition:

Anchoring Condition 3 (2/2)

The anchoring point of a higher-order type should be original, in the functor that intro-
duced it or in an alias of the functor that introduced it.

To distinguish original anchoring points, we will need to slightly instrument the typing rules,
as this information cannot be reconstructed just from types.

4.3.2 The Anchoring Process

In this section we present an algorithm that produces a source signature given an Mω one,
when the anchoring conditions are met. For pedagogical purposes, it is split in two steps: we
first translate Mω signatures into tagged source signatures, before removing tags to obtain
source signatures. Both steps are presented as relations, although they are deterministic.
We first explain some instrumentation added to the typing judgment: scope barriers, arity
delimiters, type variables binder indicator, and application marks.

Instrumenting the typing judgment (1/4) First, we extend the grammar of environ-
ments with scope barriers: we write Γ ·Γ′ for an environment that behaves as Γ,Γ′ but with
a barrier between Γ and Γ′ and let ∆ range over environments without barriers. Hence, by
writing Γ ·∆, we mean that ∆ is the part of the environment right after the rightmost barrier.
This is used to indicate scopes (adding a barrier) and prevent anchoring of types that have
been introduced in a larger scope. Barriers are introduced in the context by typing rules that
open scopes:

M-Typ-Sig-GenFct
Γ · ⊢ M : λα.C

Γ ⊢ ()→ M : ()→ ∃▼α.C

M-Typ-Decl-ModType
Γ · ⊢ S : λα.C

Γ ⊢A (module type T = S) : (module type T = λα.C)

M-Typ-Mod-GenFct
Γ · ⊢ M : ∃▼α.C

Γ ⊢ ()→ M : ()→ ∃▼α.C

M-Typ-Bind-ModType
Γ · ⊢ S : λα.C

Γ ⊢A (module type T = S) : (module type T = λα.C)

80 CHAPTER 4. Mω

Instrumenting the typing judgment (2/4) We also instrument Rule M-Typ-Mod-
AppFct to mark skolemization steps, writing β′⟨α⟩ instead of β′(α) but to mean the same,
so that anchoring may pattern-match on a list of lists of arguments rather than on a flat list:

M-Typ-Mod-AppFct
Γ ⊢ Sa : λα.Ca Γ, α, (Y : Ca) ⊢ M : ∃▽β.C

Γ ⊢ (Y : Sa)→ M : ∃▽β′.∀α.Ca → C
[
β 7→ β′⟨α⟩

]
This makes the treatment of arity of functors easier.

Instrumenting the typing judgment (3/4) When adding new variables in the environ-
ment, we add a flag when they come from an universal quantification. We write !α to indicate
that α were universally quantified and we write ?α otherwise (for existential or lambda quan-
tification). This enables the definition of an operator args(∆), that returns the list (of lists)
of universally quantified variables. For the sake of readability, the flags are written only when
relevant for the context. Alternatively, we could also have identified universally quantified
variables by the fact that they immediately precede functor parameters in ∆. We used flags
because they also simplify the presentation of the proofs in Section 4.3.3.

Instrumenting the typing judgment (4/4) Finally, we modify the typing rule for functor
application M-Typ-Mod-AppApp to mark higher-order abstract types, in order to identify
original anchoring points: type declarations obtained by a functor application are marked
as not original, while aliasing a functor copies its type declaration unmarked. Technically,
this is achieved by using a syntactic mark τ † on types, which can be seen as the introduction
of a postfixed constant † that behaves as λα.α. That is, τ † syntactically differ from τ but
really means τ . Marks are ignored by subtyping rules, which may freely erase them. We
write C† for the signature C where all type declarations type t = τ of the structure and
substructures have been rewritten into type t = τ †—but the marking does not go inside the
body of functors nor inside module-types. Therefore, we only change the resulting signature
of the rule M-Typ-Mod-AppApp to a marked signature C†[α 7→ τ]:

M-Typ-Mod-AppApp
Γ ⊢ P : ∀α.Ca → C Γ ⊢ P ′ : C′ Γ ⊢ C′ < Ca[α 7→ τ]

Γ ⊢ P (P ′) : C†[α 7→ τ]

From Mω Signatures to Tagged Source Signatures

The algorithm proceeds by visiting the Mω signature in left-to-right, depth-first order. Along
the way, it removes all universal and existential quantifiers from the Mω signature and replaces
occurrences of the corresponding abstract type variables by either a self-reference (at its
anchoring point) or a path referring to its anchoring point. An anchoring map θ from Mω

types τ to qualified types P.t is built and updated during the visit. The algorithm is defined
by mutually recursive judgments:

• Environment anchoring Γ ↪→ θ checks that θ is a correct anchoring map for Γ.

• Signature anchoring Γ;θ ⊢ C ↪P−→ S : θ, given a path P (which is actually shallow, i.e.,
taking one of the three forms Y , A.X, or A.Val(Y)), translates the Mω-signature C into
a tagged source signature S and produces a (possibly empty) local anchoring map θ of
the abstract types anchored in S, prefixed by P . We also define declaration anchoring
Γ ; θ ⊢ D ↪

A−→ D : θ, with a self-reference A in place of the path P .

• Local anchoring Γ;θ ⊢ C ↪−→ S : (α 7→ _) just checks that signature C can be translated
into S producing a local map of domain α that is ignored afterwards.

4.3. REBUILDING SOURCE SIGNATURES 81

• Type anchoring Γ ; θ ⊢ τ ↪→ u translates the Mω type τ to a source type u, replacing
each Mω variable by a path to its anchor, as described in θ.

The whole set of rules is given in Figure 14. The key rules are those that extend, update,
or use the anchoring map to reconstruct source type expressions. We start with a simple
example:

Example 4.3.4. To illustrate the anchoring process, we consider the Mω signature on the
left-hand side. At each line, we give the corresponding anchoring map, used to produce the
source signature on the right-hand side.

1 ∃▽α, β.sig
2 type t = α
3 module X : sig
4 type u = β
5 val x : β × α
6 end
7 val y : β × α
8 end

∅
(α 7→ A.t)
(α 7→ A.t)
(α 7→ A.t) ⊎ (β 7→ B.u)
(α 7→ A.t) ⊎ (β 7→ B.u)
(α 7→ A.t) ⊎ (β 7→ A.X.u)
(α 7→ A.t) ⊎ (β 7→ A.X.u)

1 sigA
2 type t = A.t
3 moduleX : sigB
4 typeu = B.t
5 valx : B.t×A.t
6 end
7 val y : A.X.u×A.t
8 end

The anchoring map is extended at line (2) and (4) when the anchoring points for α and β
are found. The map is updated at line (6) when exiting the submodule X: the path for the
anchoring point of β is prefixed by X.

Anchoring points A new anchoring point is introduced when reaching a type declaration
of the form type t = α where α is not anchored yet, i.e., not in the domain of θ. A simplified
rule for first-order types is:

α /∈ dom(θ) α ∈ ∆ args(∆) = ∅

Γ ·∆ ; θ ⊢ type t = α ↪
A−→ type t = A.t : (α 7→ A.t)

We ensure that the type α has been introduced after the left-most barrier, by requiring
α ∈ ∆, and check that the type declaration has not been made inside an applicative functor
by requiring that the environment ∆ contains no universally quantified types. The check for
positivity is made when exiting a functor definition, it is not visible here. We then return
the singleton map (α 7→ A.t). The general version of the rule A-Decl-Anchor considers a
declaration for a possibly higher-order unmarked type expression φ:

A-Decl-Anchor
φ /∈ dom(θ) φ ∈ ∆ args(∆) = α1 ; . . . αn

Γ ·∆ ; θ ⊢ type t = φ⟨α1⟩ . . . ⟨αn⟩ ↪
A−→ type t = A.t : (φ 7→ A.t)

This rule only applies when φ is both unmarked and applied to exactly the sequence args(∆)
of abstract types in ∆ (which necessarily follow φ). Anchoring fails if one of the conditions
does not hold. The process could be made more permissive or more restrictive by tweaking
this rule.

Updates The anchoring map θ is updated in the two places where access paths to types must
be changed as we exit scopes: (1) in Rule A-Sig-StrPath, locally anchored abstract types are
made available through the path P and (2) in Rule A-Sig-FctApp, paths to anchored types
of θ are point-wise abstracted over the functor parameter Y in the returned map λY.θ. The
list α is marked as existentially quantified in the left-hand side premise (when anchoring Ca)

82 CHAPTER 4. Mω

A-Env-Decl

Γ ; θ ⊢ D ↪
A−→ D : θ′

Γ, A.D ↪→ θ ⊎ θ

A-Env-Arg

Γ ·α ; θ ⊢ Ca ↪
Y−→ Sa : θa dom(θa) = α

Γ, α, (Y : C) ↪→ θ ⊎ θa

A-Env-Abs
Γ ↪→ θ

Γ, α ↪→ θ

(a) Anchoring of environment

A-Sig-StrPath

Γ ; θ ⊢ D ↪
A−→ D : θ A /∈ Γ

Γ ; θ ⊢ sig D end ↪P−→ sigA D end : θ[A 7→ P]

A-Sig-StrNone

Γ ; θ ⊢ D ↪
A−→ D : θ A /∈ Γ dom(θ) = α

Γ ; θ ⊢ sig D end ↪−→ sigA D end : (α 7→ _)

A-Sig-FctGen
Γ ·α ; θ ⊢ C ↪−→ S : (α 7→ _)

Γ ; θ ⊢ ()→ ∃▼α.C ↪A.Val−−−→ ()→ S : ∅

A-Sig-FctApp

Γ ·α ; θ ⊢ Ca ↪
Y−→ Sa : θa dom(θa) = α

Γ, α, Y : Ca ; θ ⊎ θa ⊢ C ↪
A.Val(Y)−−−−−−→ S : θ

Γ ; θ ⊢ ∀α.Ca → C ↪
A.Val−−−→ (Y : Sa)→ S : λY.θ

(b) Anchoring of signatures

A-Decl-Val
Γ ; θ ⊢ τ ↪→ u

Γ ; θ ⊢ val x : τ ↪
A−→ (valx : u) : ∅

A-Decl-Anchor
φ /∈ dom(θ) φ ∈ ∆ args(∆) = α1 ; . . . αn

Γ ·∆ ; θ ⊢ type t = φ⟨α1⟩ . . . ⟨αn⟩ ↪
A−→ type t = A.t : (φ 7→ A.t)

A-Decl-Type
Γ ; θ ⊢ τ ↪→ u

Γ ; θ ⊢ type t = τ ↪
A−→ type t = u : ∅

A-Decl-Mod

Γ ; θ ⊢ C ↪A.X−−−→ S : θ

Γ ; θ ⊢ module X : C ↪A−→ moduleX : S : A.θ

A-Decl-Empty

Γ ; θ ⊢ ∅ ↪
A−→ ∅ : ∅

A-Decl-ModType
Γ, α ; θ ⊢ C ↪−→ S : (α 7→ _)

Γ ; θ ⊢ (module type T = λα.C) ↪A−→ module type T = S : ∅

A-Decl-Seq

Γ ; θ ⊢ D ↪
A−→ D : θ1 Γ, A.D ; θ ⊎ θ1 ⊢ D ↪

A−→ D : θ2

Γ ; θ ⊢ D,D ↪
A−→ D, D : θ1 ⊎ θ2

(c) Anchoring of declarations

A-Type-Application
τ = φ⟨τ1 . . . ⟩ . . . ⟨τn . . . ⟩ θ(φ) = λYk. . . . λYn. P.t

∀i ∈ Jk, nK . Γ ; θ ⊢ τi ↪→ Pi.id u = θ(φ)(Pk) . . . (Pn) Γ ⊢ u : τ
Γ ; θ ⊢ τ ↪→ u

(d) Anchoring of types

Figure 14: Anchoring rules

4.3. REBUILDING SOURCE SIGNATURES 83

and universally quantified in the right-hand side one (when anchoring C).

A-Sig-StrPath

Γ ; θ ⊢ D ↪
A−→ D : θ A /∈ Γ

Γ ; θ ⊢ sig D end ↪P−→ sigA D end : θ[A 7→ P]

A-Sig-FctApp

Γ · ?α ; θ ⊢ Ca ↪−→ Sa : θa dom(θ) = α Γ, !α, Y : Ca ; θ ⊎ θa ⊢ C ↪
A.Val(Y)−−−−−−→ S : θ

Γ ; θ ⊢ ∀α.Ca → C ↪
A.Val−−−→ (Y : Sa)→ S : λY.θ

By contrast, the anchoring map of the body of a generative functor is thrown away (Rule
A-Sig-FctGen), as generative functors cannot appear in paths, 1 and a barrier is added in
the premise, as the body cannot capture types defined outside of the functor.

Path resolution Finally, the anchoring map is used for anchoring an Mω-types τ into a
qualified type – which requires finding a suitable path to access the anchoring point – by the
following rule:

A-Type-Application
τ = φ⟨τ1 . . . ⟩ . . . ⟨τn . . . ⟩ θ(φ) = λYk. . . . λYn. P.t

∀i ∈ Jk, nK . Γ ; θ ⊢ τi ↪→ Pi.id u = θ(φ)(Pk) . . . (Pn) Γ ⊢ u : τ
Γ ; θ ⊢ τ ↪→ u

Here, we consider types stripped of their marks, e.g., by reducing φ† to φ. The rule A-Type-
Application applies when τ is of the form φ⟨τ1 . . . ⟩ . . . ⟨τn . . . ⟩ and θ(φ) is a (mathematical)
function of the form λYk. . . . λYn.P.t. Types τk to τn may only be resolved to identity tags
Pk.id to Pn.id. This rule is designed to allow anchoring of a type τ that is abstract over a
certain number of parameters (here, n − k + 1) even if τ is actually applied to more param-
eters (here, n). This comes from the fact that source signatures do not display the depth of
enclosing applicative functors. The resulting type u is the path (resulting from the mathemat-
ical application) θ(φ)(Pk) . . . (Pn). However, u must be re-typechecked to ensure that paths
occurring in τ only contain valid functor applications2 and that it returns the same type as
the input type τ .

Example 4.3.5. We illustrate the anchoring process of a type inside an applicative functor.
We give the corresponding anchoring map at the end of the line. For the sake of readability,
we do not write the identity of the functor (nor its body) and we write tagged signatures with

1Similarly, Rule A-Decl-ModType only checks for anchorability of the body of a module-type, and
then discards the anchoring map, since module-types cannot appear in paths.

2Indeed, it can happen that a module X is lost, while a transparent ascription X’ is kept. The types resulting
from a functor application F(X).t may not be anchorable as F(X’).t if X’ lacks certain fields.

84 CHAPTER 4. Mω

pairs.

1 ∃▽φ, αid1 , αid2 .sig
2 module F :
3 ∀αid, α.(αid, sig type t = α end)→
4 sig type t = φ(α) end
5

6 module X1 : (αid1 , sig type t = int end)
7 module X2 : (αid2 , sig type t = bool end)
8 type t = φ ⟨αid1 , int⟩
9 type u = φ ⟨αid2 , bool⟩

10 end

∅

∅

(αid 7→Y.id, α 7→Y.Val.t)

(αid 7→Y.id, α 7→Y.Val.t, φ 7→C.t)

(φ 7→λY.A.F (Y).t)

(φ 7→λY.A.F (Y).t, αid1 7→A.X1.id)

(φ 7→λY.A.F (Y).t, αid1 7→A.X1.id, αid2 7→A.X2.id)

(φ 7→λY.A.F (Y).t, αid1 7→A.X1.id, αid2 7→A.X2.id)

(φ 7→λY.A.F (Y).t, αid1 7→A.X1.id, αid2 7→A.X2.id)

1 sigA
2 moduleF : (Y : sigB type t = B.t end)→ sigC type t = C.t end
3 moduleX1 : sigA1

type id = A1.id module Val : (sig type t = int end) end
4 moduleX2 : sigA2

type id = A2.id module Val : (sig type t = bool end) end
5 type t = A.F (A.X1).t
6 typeu = A.F (A.X2).t
7 end

We have the following steps:
3. When anchoring the body of the functor, we have an anchoring of the universally quan-

tified variables αid, α.
4. Then, an anchoring point for φ is found, initially bound to the local name C.t.
5. When exiting the functor, the anchoring of αid, α is thrown, as the variables are no longer

accessible, and the anchoring of φ is updated to a parameterized path λY.A.F (Y).t
6. The identity tag αid1 is anchored to X1.id
7. The identity tag αid2 is anchored to X2.id

Finally, the anchoring map is used at lines (8) and (9) to rebuild the qualified types.

Untagging

The first step of anchoring returns a tagged source signature S. It remains to remove the tags,
i.e., to return a signature S′ with the id and Val fields stripped of S, recursively, but expressing
the same sharing using transparent signatures. This is defined as a judgment Γ ⊢ S ↪→ S′.
The two interesting rules are for untagging structural signatures:

U-Sig-Fresh
Γ ⊢ S ↪→ S′

Γ ⊢ Tag {S} ↪→ S′

U-Sig-Con
Γ ⊢ S ↪→ S′ Γ ⊢ S′ : C′ Γ ⊢ P : C Γ ⊢ C < C′

Γ ⊢ sigA module Val : S type id = P.id end ↪→ (= P < S′)

When the identity type declaration is an abstract type declaration Tag {S} (Rule U-Sig-
Fresh), i.e., of the form sigA type id = P.id module Val : S end, the identity of the module
is fresh, hence the anchored signature of the value is returned directly. Otherwise (Rule U-
Sig-Con), the identity type declaration is concrete, i.e., of the form P.id; that is, the signature
of a module that shares its identity with the module P . We retrieve the Mω-signature C of
the module P and check that it is a subtype of the Mω-signature C′ of the untagging S′ of S,
so as to ensure that the transparent signature (= P < S′) to be returned is valid.

The other rules are given in only remove the access to Val-fields and inductively call
untagging.

4.3. REBUILDING SOURCE SIGNATURES 85

U-Sig-Fresh
Γ ⊢ S ↪→ S′

Γ ⊢ Tag {S} ↪→ S′

U-Sig-Con
Γ ⊢ S ↪→ S′ Γ ⊢ S′ : C′ Γ ⊢ P : C Γ ⊢ C < C′

Γ ⊢ sigA module Val : S type id = P.id end ↪→ (= P < S′)

U-Sig-FctA
Γ ⊢ Sa ↪→ S′a Γ ⊢ S ↪→ S′

Γ ⊢ (Y : Sa)→ S ↪→ (Y : S′a)→ S′

U-Sig-FctG
Γ ⊢ S ↪→ S′

Γ ⊢ ()→ S ↪→ ()→ S′

Figure 15: Untagging rules

4.3.3 Properties of Anchoring

In this section we state and prove the meta-theoretic properties of anchoring.

Anchoring of elaborated signatures Conceptually, anchoring and elaboration of signa-
tures are inverse of each other, which we could write as “Elaboration ◦ Anchoring = Id”.
There is however a caveat, as typechecking is not injective: several source signatures can
express the same type sharing information. Therefore, we may quotient source signatures by
the equivalence induced by Mω typing (using the type equivalence of Mω). We define the
equivalence of source signatures as:

Γ ⊢ S ≈ S′ ≜ Γ ⊢ S : λα.C ∧ Γ ⊢ S′ : λα.C′ ∧ λα.C ≡ λα′.C′.

Anchoring produces a signature where all type equalities have been inlined.

Theorem 2: Elaboration ◦ Anchoring = Id

The elaboration of source signatures produces anchorable signatures. Given a source
signature S, typing environment Γ and anchoring map θ such that:

Γ ⊢ S : λα.C ∧ Γ ↪→ θ

Then, there exists a source signature S′ and an anchoring map θ′ such that:

Γ ·α ; θ ⊢ C ↪−→ S′ : (α 7→ _)

The signature S′ might not be syntactically equal to S, but is equivalent to S (with regard
to Mω typing):

Γ ⊢ S ≈ S′

Elaboration of anchored signatures The other direction would be to show that, starting
with a Mω signature C, finding an anchored signature S and elaborating it back to Mω would
give a signature C′ that is equivalent to C, the signature we started with. This could be seen
as “Anchoring ◦ Elaboration = Id”. Yet, there is a subtlety. Mω signatures can express the
fact that they are inside an applicative functor, as their abstract types are applied to a certain
set of universally quantified type variables. This does not appear in source signatures, which
are the same whatever the number of enclosing applicative functors. Therefore, we only have
an equivalence “up to skolemization”.

86 CHAPTER 4. Mω

Theorem 3: Anchoring ◦ Elaboration ≃ Id

Given a Mω signature C, a source signature S, a typing environment and anchoring maps θ
and θ′ such that:

Γ ·∆ ; θ ⊢ C ↪−→ S : θ′ and Γ ↪→ θ and dom(θ′) = α

Typing back the anchoring gives the original signature, up to re-skolemization (depending
on the universally quantified types in the environment).

Γ ·∆ ⊢ S : λβ.C′ ∧ C′
[
β 7→ α(args(∆))

]
= C

Untagging Finally, the untagging phase is not surprising, and is the inverse of tagging.
The result relies on a notion of tag-wellformed source signatures: signatures that have identity
tags at each module binding and functor body. This is trivially maintained by typing and
anchoring. We have the following result:

Theorem 4: Untagging

Given a tag-wellformed signature S, untagging it and tagging it back yields an equivalent
signature:

Γ ⊢ S ↪→ S′ =⇒ Γ ⊢ S ≈
q
S′

y

The rest of this section is dedicated to the corresponding proofs. This thesis does not
contain the proof of Theorem 4.

Proof of Theorem 3

We show the result by mutual induction on the anchoring of signatures and declarations. The
induction hypothesis is:

Γ ·∆ ; θ ⊢ C ↪−→ S : θ ∧ Γ ↪→ θ ∧ dom(θ) = α

=⇒ Γ ·∆ ⊢ S : λβ.C′ ∧ C′
[
β 7→ α(args(∆))

]
= C

Γ ·∆ ; θ ⊢ D ↪
A−→ D : θ ∧ dom(θ) = α ∧ Γ ↪→ θ

=⇒ Γ ·∆ ⊢ D : λβ.D′ ∧ D′[
β 7→ α(args(∆))

]
= D

The proof is by structural induction on the anchoring derivation.

• A-Sig-FctGen: The conclusion of the rule is the signature anchoring judgment

Γ ·∆ ; θ ⊢ ()→ ∃▼α.C ↪A.Val−−−→ ()→ S : ∅

Since the domain of the local map is empty, we just have to show

Γ ·∆ ⊢ ()→ S : ()→ ∃▼α.C (1)

The premise of the rule is Γ ·∆ · ?α ; θ ⊢ C ↪−→ S : (α 7→ _). By induction hypothesis, we
have Γ ·∆ ⊢ S : λβ.C′ (2) and C′

[
β 7→ α

]
= C, since args(?α) is empty, that is λβ.C′ =

λα.C.
Then (1) follows by M-Typ-Sig-GenFct applied to (2).

4.3. REBUILDING SOURCE SIGNATURES 87

• A-Sig-FctApp: The rule is

Γ ·∆ · ?α ; θ ⊢ Ca ↪
Y−→ Sa : θa (1) Γ ·∆, !α, Y : Ca ; θ ⊎ θa ⊢ C ↪

A.Val(Y)−−−−−→ S : θ (2)

Γ ·∆ ; θ ⊢ ∀α.Ca → C ↪
A.Val−−−→ (Y : Sa)→ S : λY.θ

with dom(θa) = α. By IH applied to (1), we have Γ ·∆ ⊢ Sa : λα.Ca (3) since args(α, α)
is empty. Let γ be dom(θ). By IH applied to (2), we have Γ ·∆, !α, Y : Ca ⊢ S : λβ.C′ (4)
and C′

[
β 7→ γ(args(∆), α))

]
= C (5), since args(∆, !α) is equal to args(∆), α. By rule

M-Typ-Sig-AppFct applied to (3) and (4), we have:

Γ ·∆ ⊢ (Y : Sa)→ S : λβ′.∀α.Ca → C′
[
β 7→ β′(α)

]
It remains to check:(

∀α.Ca → C′
[
β 7→ β′(α)

])[
β
′ 7→ γ(args(∆))

]
≡ ∀α.Ca → C

which follows from (5) by composition of substitutions, since β′ does not occur free
in Ca.

• A-Sig-StrPath and A-Sig-StrNone are immediate by induction.

• For A-Decl-Val, A-Decl-Type, we may easily show that Γ;θ ⊢ τ ↪→ u implies Γ ⊢ u : τ .

In both cases, the conclusion is of the form Γ ; θ ⊢ D ↪
A−→ D : ∅, it suffices to show

Γ ·∆ ⊢ D :D (1). In the case of A-Decl-Val, the conclusion is Γ ; θ ⊢ val x : τ ↪
A−→

(valx : u) : ∅ and the premise is Γ ⊢ u : τ , which implies Γ ⊢ u : τ . Then, (1) follows by
M-Typ-Decl-Val.

The case of A-Decl-Type is similar.

• A-Decl-Mod, A-Decl-ModType are immediate by induction.

• A-Decl-Anchor: the conclusion of the rule is:

Γ ·∆ ; θ ⊢ type t = φ⟨α1⟩ . . . ⟨αn⟩ ↪
A−→ type t = A.t : (φ 7→ A.t)

From the premises, we know that φ ∈ ∆ and args(∆) = α1 ; . . . αn. Hence, (type t =
α)[φ 7→ φα1 ; . . . αn] is equal to type t = φ⟨α1⟩ . . . ⟨αn⟩, which is exactly the declaration
we started with. By Rule M-Typ-Decl-TypeAbs, we have

Γ ·∆ ⊢ (type t = A.t) : λα.type t = α

• A-Decl-Seq: The Rule is:
A-Decl-Seq

Γ ; θ ⊢ D1 ↪
A−→ D1 : θ1 Γ, A.D1 ; θ ⊎ θ1 ⊢ D2 ↪

A−→ D2 : θ2

Γ ; θ ⊢ D1,D2 ↪
A−→ D1, D2 : θ1 ⊎ θ2

Writing the domain of θ1 ⊎ θ2 as dom(θ1 ⊎ θ2) = (α1, α2), we need to show that there
exists D′

1 and D′
2 such that:

Γ ·∆ ⊢ D1, D2 : λα1, α2.D′
1,D′

2 (1)

D′
1,D′

2

[
β1, β2 7→ α1(args(∆)), α2(args(∆))

]
= D1,D2 (2)

We have by induction hypothesis:

Γ ·∆ ⊢ D1 : λβ1.D′
1 ∧ D′

1

[
β1 7→ α1(args(∆))

]
= D1

Γ ·∆, A.D1 ⊢ D2 : λβ2.D′
2 ∧ D′

2

[
β2 7→ α2(args(∆, A.D1))

]
= D2

We introduce D′′
2 = D′

2

[
α1(args(∆)) 7→ β1

]
.

88 CHAPTER 4. Mω

– Proof of (1)
We use the Rule M-Typ-Decl-Seq:

M-Typ-Decl-Seq
Γ ⊢A D1 : λα1.D1(3) Γ, α1, A.D1 ⊢A D2 : λα.D2(4)

Γ ⊢A D1, D2 : λα1 α. D1,D2

The premise (3) is immediate by induction hypothesis. For the premise (4), we
show by induction that:

Γ ·∆, A.D1 ⊢ D2 : λβ2.D′
2 =⇒ Γ ·∆, β1, A.D′

1 ⊢ D2 : λβ2.D′′
2

– Proof of (2)
By definition, we have

args(∆, A.D) = args(∆)

As the declaration D′
1 is wellformed in an environment that does not contain the

β2, substituting for them does not change anything. Therefore, we have:

D′
1,D′′

2

[
β1, β2 7→ α1(args(∆)), α2(args(∆))

]
= D′

1

[
β1 7→ α1(args(∆))

]
, (D′′

2

[
β1 7→ α1(args(∆))

]
)
[
β2 7→ α2(args(∆))

]
= D1,D′

2

[
β2 7→ α2(args(∆))

]
= D1,D′

2

[
β2 7→ α2(args(∆, A.D))

]
= D1,D2

This conclude this case.

This concludes the proof.

Proof of Theorem 2

We first prove that typed signatures are anchorable, then that the result is equivalent to the
signature we started with. We start with the following lemma:

Lemma 5 (Skolemization lemma). Skolemizing a signature does not change its anchoring:

Γ, !α · ?β,∆ ; θ ⊢ C ↪P−→ S : θ =⇒ Γ · ?β′, !α,∆ ; θ ⊢ C
[
β 7→ β′(α)

]
↪
P−→ S : θ

Proof. The key observation is that, from the source syntax, accessing local types does take
into account the depth of enclosing applicative functors. The two key rules are:

• A-Decl-Anchor: when anchoring a type, the number of (list of) universally quantified
parameters n does not appear in the anchoring (nor in the resulting declaration).

• A-Type-Application: similarly, the first type arguments τ1 to τk are ignored. If the
anchoring point θ(φ) is parameterized by only n−k arguments, adding another argument
in front does not change the anchoring.

Coming back to the proof of Theorem 2, we first show that typed signatures are anchorable:

Γ ⊢ S : λα.C ∧ Γ ↪→ θ =⇒ ∃S′. Γ · ?α ; θ ⊢ C ↪−→ S′ : α 7→ _

We proceed by induction on the typing derivation of signatures and declarations:

4.4. THE FOUNDATIONS: Fω ELABORATION 89

• M-Typ-Sig-ModType and M-Typ-Sig-ModType are base-cases of the induction. We
easily show that the anchoring of the environment Γ ↪→ θ implies that stored module-
types are anchorable.

• M-Typ-Sig-GenFct and M-Typ-Sig-Str are immediate.

• M-Typ-Sig-AppFct: the induction hypothesis gives us that the signature of the core
of the functor is anchorable before the substitution of β for β′(α). Here, we use the
skolemization lemma.

• M-Typ-Sig-Trans: we first note that all type variables α appear in C′. Then, as sub-
typing between types is only defined by equality, all the types expressions τ appear in
C. As C is anchorable, so are all its type components, making C′[α 7→ τ] anchorable.

Finally, the equivalence between source signatures is an immediate consequence of Theo-
rem 3.

4.4 The Foundations: Fω Elaboration

The Mω system is designed to offer a standard, standalone, and expressive approach to the
typing of ML modules, while hiding the complexity and artifacts of its encoding in Fω. Yet, the
elaboration of module expressions and signatures of Mω in Fω, which we now present, served
as a basis for the design of Mω and still shines a new light on its internal mechanisms. It is also
used as a proof of type soundness. This elaboration is largely based on the work of Rossberg
et al. [2014], but differs in a key manner for the treatment of abstract types defined inside
applicative functors. A main contribution is the introduction of transparent existential types,
an intermediate between the standard existential types, called opaque existential types, and
the absence of abstraction. They bring the treatment of applicative and generative functors
closer, and significantly simplify the elaboration.

In Section 4.4.1, we introduce Fω with primitive records, existential types and predicative
kind polymorphism. In Section 4.4.2, we present the elaboration of Mω signatures as Fω

types. In Section 4.4.3, we focus on the key mechanism of repacking that allows to extend
the scope of an existential type. Repacking is the justification of the lifting of existential
types through record types. In Section 4.4.4, we introduce transparent existential types
to justify the skolemization of existential types through record types. In Section 4.4.5, we
show that transparent existential types can actually be encoded internally as an Fω library.
In Section 4.4.6, we present the elaboration of modules as Fω terms.

4.4.1 Fω with Kind Polymorphism

We use a variant of explicitly typed Fω with primitive records (including record concatena-
tion), existential types, and predicative kind polymorphism. While primitive records and
existential types are standard, kind polymorphism is less common. Predicativity of kind
polymorphism is not needed for type soundness. However, it ensures coherence of types used
as a logic, that is, it prevents typing terms with the empty type ∀(α : ⋆).α, whose evalua-
tion would not terminate. For that purpose, kinds are split into two categories: large and
small. Polymorphic kinds, which are large, can only be instantiated by small kinds, which in
turn do not contain polymorphic kinds. In our setting, kind polymorphism is not essential,
as it is only used to internalize the encoding of transparent existential types as Fω-terms in
Section 4.4.5. Alternatively, we could have assumed a family of transparent existential type
operators indexed by small kinds, so as to never use large kinds, moving part of the encoding
to the meta-level.

90 CHAPTER 4. Mω

ς := ⋆ | ω | ς � ς (small kinds)
κ := ς | ∀ω.κ | κ� κ (large kinds)

τ := α | τ → τ | {ℓ : τ} | ∀(α :κ). τ | ∃▼(α :κ). τ | λ(α :κ). τ | τ τ | ∀ω.τ | Λω.τ | τ ς | ()
(types)

e := x | λ(x : τ).e | e e | Λ(α :κ).e | e τ | Λω.e | e ς | e@ e | {ℓ = e} | e.ℓ
| pack ⟨τ, e⟩ as ∃▼(α :κ). τ | unpack ⟨α, x⟩ = e in e | () (terms)

Γ := · | Γ, ω | Γ, α :κ | Γ, x : τ (environments)

Figure 16: Syntax of Fω

The syntax of Fω is given in Figure 16. Typing rules are standard and given in Figure 17.
Type equivalence, defined by αβ-conversion and reordering of record fields, is also standard
and omitted. We use letters τ and e to range over types and expressions to distinguish them
from types u and expressions e of the core language, even though these should actually be
seen as a subset of τ and e. We consider Fω to be explicitly typed and explicitly kinded. As
a convention, we use a wildcard “_” when a type annotation is unambiguously determined
by an immediate sub-expression and may be omitted. This is just a syntactic convenience to
avoid redundant type information and improve readability, but the underlying terms should
always be understood as explicitly-typed Fω terms. We write ω for kind variables, α and β
for type variables of any kind, and φ and ψ for type variables known to be of higher-order
kinds. Application of expressions e ς and types τ ς to kinds are restricted to small kinds ς. In
expressions and type expressions, we actually write kinds κ (and kind abstraction λω) in pale
color so that they are non intrusive, and we often leave them implicit. We actually always do
so in the elaboration typing rules below for conciseness.

For convenience, we use n-ary notations for homogeneous sequences of type-binders. We
introduce let-bindings let x = e1 in e2 as syntactic sugar for (λ(x : _).e2) e1; we define n-ary
pack and unpack operators as follows:

pack ⟨τ τ̄ , e⟩ as ∃▼αᾱ.σ ≜ pack⟨τ, pack ⟨τ̄ , e⟩ as ∃▼ᾱ.σ[α 7→ τ]⟩ as ∃▼αᾱ.σ
unpack ⟨αᾱ, x⟩ = e1 in e2 ≜ unpack ⟨α, y⟩ = e1 in unpack ⟨ᾱ, x⟩ = y in e2
pack ⟨∅, e⟩ as σ ≜ e unpack ⟨∅, x⟩ = e1 in e2 ≜ let x = e in e2

4.4.2 Encoding of Signatures

Mω signatures are actually Fω types with some syntactic sugar. In Fω, we see Y and AI as
term variables, similar to x’s. We assume a collection ℓI of record labels indexed by identifiers
I of the source language. Structural signatures sig D end are just syntactic sugar for record
types

{
D
}
. A small trick is needed to represent type fields, which have no computational

content, but cannot be erased during elaboration as they carry additional typing constraints.
We reuse the solution of F-ing (Rossberg et al. [2014]), encoding them as identity functions
with type annotations. For this, we introduce the following syntactic sugar for the term
representing a type field (on the left). We overload the notation to also mean its type (on the
right).

⟨⟨τ :κ⟩⟩ ≜ Λ(φ :κ→ ⋆).λ(x : φ τ).x (Term) ⟨⟨τ :κ⟩⟩ ≜ ∀(φ :κ→ ⋆).φ τ → φ τ (Type)

The type τ is used as argument of a higher-kinded type operator φ to uniformly handle the
encoding of types of any kind. The key (and only useful) property is that two types (of
the same kind) are equal if and only if their encodings are equal. Finally, declarations are

4.4. THE FOUNDATIONS: Fω ELABORATION 91

⊢ ·
⊢ Γ ω /∈ Γ

⊢ Γ, ω

Γ ⊢ κ α /∈ Γ

⊢ Γ, α : κ

Γ ⊢ τ : ⋆ x /∈ Γ

⊢ Γ, x : τ

⊢ Γ

Γ ⊢ ⋆
⊢ Γ ω ∈ Γ

Γ ⊢ ω
Γ ⊢ κ Γ ⊢ κ′

Γ ⊢ κ�κ′
Γ, ω ⊢ κ
Γ ⊢ ∀ω.κ

(a) Environment checking

Γ ⊢ τ1 : ⋆ Γ ⊢ τ2 : ⋆
Γ ⊢ τ1 → τ2 : ⋆

Γ ⊢ τ : ⋆ ⊢ Γ

Γ ⊢
{
ℓl : τ

}
: ⋆

⊢ Γ α : κ ∈ Γ

Γ ⊢ α : κ

Γ, α : κ ⊢ τ : ⋆
Γ ⊢ ∀(α :κ). τ : ⋆

Γ, ω ⊢ τ : ⋆
Γ ⊢ ∀ω.τ : ⋆

Γ, α : κ ⊢ τ : ⋆
Γ ⊢ ∃▼(α :κ). τ : ⋆

Γ, α : κ ⊢ τ : κ′

Γ ⊢ Λ(α :κ). τ : κ→ κ′
Γ ⊢ τ1 : κ′ → κ Γ ⊢ τ2 : κ′

Γ ⊢ τ1 τ2 : κ

Γ, ω ⊢ τ : κ
Γ ⊢ Λω.τ : ∀ω.κ

Γ ⊢ τ : ∀ω.κ Γ ⊢ ς
Γ ⊢ τ ς : κ[ω 7→ ς]

(b) Type checking

F-Var
⊢ Γ x : τ ∈ Γ

Γ ⊢ x : τ

F-Abs
Γ, x : τ ⊢ e : τ ′

Γ ⊢ λ(x : τ).e : τ → τ ′

F-App
Γ ⊢ e1 : τ ′ → τ Γ ⊢ e2 : τ ′

Γ ⊢ e1 e2 : τ

F-Record
Γ ⊢ e : τ #(ℓ)

Γ ⊢
{
ℓ = e

}
:
{
ℓ : τ

} F-Proj
Γ ⊢ e :

{
ℓ : τ, ℓ1 : τ1

}
Γ ⊢ e.ℓ : τ

F-Append
Γ ⊢ e1 :

{
ℓ1 : τ1

}
Γ ⊢ e2 :

{
ℓ2 : τ2

}
ℓ1 # ℓ2

Γ ⊢ e1 @ e2 :
{
ℓ1 : τ1.ℓ2 : τ2

}
F-Tapp
Γ ⊢ e : ∀(α :κ).σ Γ ⊢ τ : κ

Γ ⊢ e τ : σ[τ 7→ α]

F-Kapp
Γ ⊢ e : ∀ω.τ Γ ⊢ ς

Γ ⊢ e ς : τ [ω 7→ ς]

F-Tabs
Γ, α : κ ⊢ e : τ

Γ ⊢ λ(α :κ).e : ∀(α :κ). τ

F-Kabs
Γ, ω ⊢ e : τ

Γ ⊢ Λω.e : ∀ω.τ

F-Pack
Γ ⊢ ∃▼(α :κ).σ : ⋆ Γ ⊢ τ : κ Γ ⊢ e : σ[τ 7→ α]

Γ ⊢ pack ⟨τ, e⟩ as ∃▼(α :κ).σ : ∃▼(α :κ).σ

F-Unpack
Γ ⊢ e1 : ∃▼(α :κ). τ Γ, α :κ, x : τ ⊢ e2 : σ Γ ⊢ σ : ⋆

Γ ⊢ unpack ⟨α, x⟩ = e1 in e2 : σ

(c) Expression typing

Figure 17: Typing rules of Fω

92 CHAPTER 4. Mω

syntactic sugar for record entries (distinguished by the category of the identifier):

val x : τ ≜ ℓx : τ

type t = τ ≜ ℓt : ⟨⟨τ⟩⟩
module X : C ≜ ℓX : C
module type T = λα.C ≜ ℓT : ⟨⟨λα.C⟩⟩

4.4.3 Sharing Existential Types by Repacking

The encoding of module expressions as Fω terms is slightly more involved than for signatures.
Although structures and functors are simply encoded as records and functions, a difficulty
arises from the need to lift existential types to extend their scope, as explained in Section 4.1.2.

Let us first consider the easier generative case. The only construct for handling a term
with an abstract type is unpack, which allows using the term in a subexpression, hence with
a limited scope, but not to make an abstract type accessible to the rest of the program. Yet,
abstract type declarations inside modules have an open scope and are visible in the rest of
the program. At a technical level, the difficulty comes from the representation of structures.
To model them, one needs ordered records (also known as telescopes), where each component
can introduce new abstract types accessible to the rest of the record, while standard Fω only
provides non-dependent records.

This observation was at the core of the design of open existential types Montagu [2010]
and of recursive type generativity Dreyer [2007a]. Here, in order to stay in plain Fω, we reuse
and adapt the trick of F-ing (Rossberg et al. [2014]): structures are built field by field with a
special repacking pattern: abstract types are unpacked, shared, but abstractly, with the rest
of the structure, and then repacked. This allows the terms to mimic the existential lifting
done in the types.

To capture this lifting of existentials out of records, we first introduce a combined syntactic
form repack▼ ⟨ᾱ, x⟩ = e1 in e2, which allows the abstract types of e1 to appear in the type
of e23:

repack▼ ⟨ᾱ, x⟩ = e1 in e2 ≜ unpack ⟨ᾱ, x⟩ = e1 in pack ⟨ᾱ, e2⟩ as ∃▼ᾱ._

Then, we use it to define a new construct to concatenate two records e1 and e2 with disjoint
domains, but where e2 might access the first record, via the bound name x1, and reuse its
abstract types, via the bound variables α:

lift▼⟨ᾱ, x1 = e1 @ e2⟩ ≜ repack▼ ⟨ᾱ, x1⟩ = e1 in repack▼
〈
β̄, x2

〉
= e2 in x1 @ x2

It is better understood by the following derived typing rule and its use in the following
example.

Γ ⊢ e1 : ∃▼ᾱ.
{
ℓ1 : τ1

}
Γ, ᾱ, x1 :

{
ℓ1 : τ1

}
⊢ e2 : ∃▼β̄.

{
ℓ2 : τ2

}
ℓ1# ℓ2

Γ ⊢ lift⟨ᾱ, x1 = e1 @ e2⟩ : ∃▼ᾱ, β̄.
{
ℓ1 : τ1; ℓ2 : τ2

}
Example 4.4.1. A simple module M with three type fields, on the left-hand side. The raw
encoding (after reduction of administrative let-bindings) on the right-hand side shows how
abstract types are shared between components via lifting.

Source

1 module M = structA
2 type t = A.t
3 typeu = A.u
4 type v = A.t×A.u
5 end

Encoding of e
e = lift▼ ⟨α, x1 = pack ⟨(), {ℓt = ⟨⟨()⟩⟩}⟩ as ∃▼α. {ℓt : ⟨⟨α⟩⟩}

@ lift▼ ⟨β, x2 = pack ⟨(), {ℓu = ⟨⟨()⟩⟩}⟩ as ∃▼β. {ℓu : ⟨⟨β⟩⟩}
@ {ℓv = ⟨⟨α× β⟩⟩}⟩⟩

Signature of e
C = ∃α, β. {ℓt : ⟨⟨α⟩⟩ ; ℓu : ⟨⟨β⟩⟩ ; ℓv : ⟨⟨α× β⟩⟩}

3We leave the type implicit since the type of repacking is fully determined by the combination of ᾱ and
the type of e2

4.4. THE FOUNDATIONS: Fω ELABORATION 93

4.4.4 Transparent Existential Types and Their Lifting Through Function
Types

The repacking pattern allows lifting existential types outside of record types. Unfortunately,
this is insufficient for the applicative case, which uses skolemization to further lift abstract
types out of the functor body to the front of the functor. This lifting of existential types
though universal quantifiers by skolemization and through arrow types, as done in Mω, is not
definable in Fω. More precisely, lifting through arrow types is unsound, while lifting through
universal types is not expressible.

One solution is to avoid skolemization by a-priori abstraction over all possible type and
term variables, i.e., the whole typing context. Doing so, existential types are always introduced
at the front and need not be skolemized. This is the solution followed by the authors of F-
ing (Rossberg et al. [2014]) and by Shan [2004]. While this suffices to prove soundness, the
encoding is impractical for manual use of the pattern – as it requires frequently abstracting
over the whole environment – and therefore does not provide a good intuition of what modules
really are. The encoding could be slightly improved by abstracting over fewer variables,
without really solving the problem of a-priori abstraction.

We instead retain skolemization, following the intuition of the Mω system, but we tweak the
definition of existential types to make their lifting though universal types definable. Namely,
we introduce transparent existential types, written ∃▽τ (α :κ).σ to described types that behave
as usual existentials ∃▼(α :κ).σ but remembering the witness type τ for the abstract type α.

We create a transparent existential type with the expression pack e as ∃▽τ (α :κ).σ, which
behaves much as pack ⟨τ, e⟩ as ∃▼(α :κ).σ, except that the witness type τ remains visible in
the result type. A transparent existential type is thus weaker than a usual abstract type, as
we still see the witness type. It is still abstract, as α cannot be turned back into its witness
type τ and has to be treated abstractly. Two transparent existential types with different
witnesses are incompatible. This could be seen as a weakness of transparent existentials, but
it is actually a key to their lifting through arrow types.

Transparent existential types do not replace usual existential types, which we here call
opaque existential types, but come in addition to them. Indeed, an expression of a transparent
existential type can be further abstracted to become opaque, using the expression seal e,
which behaves as the identity but turns the expression e of type ∃▽τ (α :κ).σ into one of type
∃▼(α :κ).σ.

Transparent existential types may also be used abstractly, with the expression repack▽

⟨α, x⟩ = e1 in e2, which is the analog of the expression repack▼ ⟨α, x⟩ = e1 in e2 but when e1 is
a transparent existential type ∃▽τ (α :κ).σ1. In both cases, e2 is typed in a context extended
with the abstract types α and a variable x of type σ1. Crucially, e2 cannot see the witnesses
τ . However, the abstract type variables α may still appear in the type σ2 of the expression e2,
and therefore it is made transparent again in the result type of repack▽ ⟨α, x⟩ = e1 in e2, which
is ∃▽τ (α :κ).σ2. We do not need a primitive transparent version unpack▽ ⟨α, x⟩ = e1 in e2,
since it can be defined as syntactic sugar for unpack ⟨α, x⟩ = seal e1 in e2.

Lifting through an arrow type So far, one may wonder what is the advantage of trans-
parent existentials by comparison with opaque existentials. Their key advantage is that we
can provide two key additional constructs for lifting transparent existentials across arrow
types and universal types – the only reason to have introduced them in the first place. The
lifting across an arrow type, written lift→e, turns an expression of type σ1 → ∃▽τ (α :κ).σ2
into one of type ∃▽τ (α :κ).(σ1 → σ2) as long as α is fresh for σ1. Since we can observe the
witness τ , we can ensure that the choice of the witness does not depend on the value (of type
σ1), allowing us to lift it outside of the function. While this operation seems easy, it crucially
depends on existential types begin transparent – this transformation would be unsound with
opaque existentials.

94 CHAPTER 4. Mω

F-Hide
Γ ⊢ ∃▽τ (α :κ).σ : ⋆ Γ ⊢ e : σ[α 7→ τ]

Γ ⊢ pack e as ∃▽τ (α :κ).σ : ∃▽τ (α :κ).σ

F-Seal
Γ ⊢ e : ∃▽τ (α :κ).σ

Γ ⊢ seal e : ∃▼(α :κ).σ

F-Hidden
Γ ⊢ e1 : ∃▽τ (α :κ).σ Γ, α :κ, x : σ ⊢ e2 : σ′

Γ ⊢ repack▽ ⟨α, x⟩ = e1 in e2 : ∃▽τ (α :κ).σ′

F-LiftArr
Γ ⊢ e : σ1 → ∃▽τ (α :κ).σ2

Γ ⊢ lift→e : ∃▽τ (α :κ).σ1 → σ2

F-LiftAll
Γ ⊢ e : ∀(β :κ′).∃▽τ (α :κ).σ

Γ ⊢ lift∀e : ∃▽λ(β :κ′). τ (α′ :κ′ → κ).∀(β :κ′).σ[α 7→ α′ β]

Figure 18: Typing rules for transparent existential types

Unsoundness example For instance, let us consider the following example (adapted from
the example of Dreyer et al. [2003]). We first define the type of a small record containing a
value and a function that can be applied to the value:

φ ≜ λα.{ℓx : α, ℓf : α→ unit}

Then we consider the following expression:

m ≜ λx. if x then (pack ⟨int, {ℓx = 42, ℓf = λx.()}⟩ as ∃▼α.φα)
else (pack ⟨unit→ unit, {ℓx = λu.(), ℓf = λx.x ()}⟩ as ∃▼α.φα)

It has type bool→ ∃▼α. {ℓx : α, ℓf : α→ unit}, but it would be unsound to consider it at the
type ∃▼α.bool → {ℓx : α, ℓf : α→ unit}. Indeed, assuming m has such type, the following
well-typed code would get stuck on the application 42 ():

unpack ⟨α,M⟩ = m in let M1 =M true in
let M2 =M false in
M2.f (M1.x)

The takeaway is that a function of type σ1 → ∃▼α.σ2 can return an existential value whose
witness type depends on its argument; it would thus be impossible to have a unique wit-
ness type to be used for all applications of the function, as required in a function of type
∃▼α.(σ1 → σ2). The language Fω does not have dependent types, but has existential types
with dynamically chosen witnesses (the opaque ones).

Lifting through a universal type Similarly, lifting across a universal type variable β
of kind κ′, written lift∀e, turns an expression of type Λ(β :κ′).∃▽τ (α :κ).σ into one of type
∃▽λ(β :κ′). τ (α′ :κ′ → κ).∀(β :κ′).σ[α 7→ α′ β], provided β is fresh for τ , using skolemization of
both the existential variable α and its witness type τ . It is a key for type soundness that β
does not appear free in the witness type, hence that we know the witness type – this is why
skolemization is not encodable with opaque existential types.

An extension of Fω To summarize, we have extended the syntax of Fω as follows:

τ ::= . . . | ∃▽τ (α :κ).σ

e ::= . . . | pack e as ∃▽τ (α :κ).σ | seal e | repack▽ ⟨α, x⟩ = e1 in e2 | lift→e | lift∀e

Their typing rules are given in Figure 18 and discussed below. Transparent existential types
are introduced (just as opaque ones) by packing, by the Rule F-Hide. They can be transformed

4.4. THE FOUNDATIONS: Fω ELABORATION 95

into opaque ones by sealing, where the witness is lost, in Rule F-Seal.
F-Hide
Γ ⊢ ∃▽τ (α :κ).σ : ⋆ Γ ⊢ e : σ[α 7→ τ]

Γ ⊢ pack e as ∃▽τ (α :κ).σ : ∃▽τ (α :κ).σ

F-Seal
Γ ⊢ e : ∃▽τ (α :κ).σ

Γ ⊢ seal e : ∃▼(α :κ).σ

Transparent existential types do not have an unpack construct, only a repack construct,
with the following rule:

F-Repack
Γ ⊢ e1 : ∃▽τ (α :κ).σ Γ, α :κ, x : σ ⊢ e2 : σ′

Γ ⊢ repack▽ ⟨α, x⟩ = e1 in e2 : ∃▽τ (α :κ).σ′

This comes from the fact that, when unpacking unpack ⟨α, x⟩ = e1 in e2 the right-hand-
side expression e2 only sees the left-hand-side expression e1 through the variables α and x.
Specifically, the result could not be packed back as a transparent existential in e2, as α is only
seen abstractly! Therefore, we only have a repack construct, and the normal unpack can be
obtained by sealing and using the normal opaque unpack construct.

Finally, we have two rules for the lifting operators F-LiftArr and F-LiftAll, written
here without kinds for the sake of readability (the kinded version can be found in Figure 18):

F-LiftArr
Γ ⊢ e : σ1 → ∃▽τ (α).σ2

Γ ⊢ lift→e : ∃▽τ (α).σ1 → σ2

F-LiftAll
Γ ⊢ e : ∀β.∃▽τ (α).σ

Γ ⊢ lift∀e : ∃▽λβ.τ (α′).∀β.σ[α 7→ (α′ β)]

Semantics The added constructs have no additional computational content, namely repack
behaves as a let-binding, while the other constructs behave as their underlying expression e.

Derived operators We add syntactic sugar for n-ary versions of transparent packing and
repacking, as we did for opaque existentials. We write sealn for n applications of seal. We
can define a lifting operation lift▽⟨ᾱ, x1 = e1 @ e2⟩ for dependent record concatenation as the
counterpart of the opaque version, by replacing opaque repacking by transparent repacking.
Finally, we also define a new operation lift∗e that uses a combination of the primitive lift→ and
lift∀ to turn an expression e of type ∀ᾱ.σ1 → ∃▽τ (β̄).σ2 into one of type ∃▽λᾱ.τ (β̄′).∀α.σ1 →
σ2

[
β̄ 7→ β′ ᾱ

]
, which is the key transformation for lifting existentials out of applicative-functor

bodies. The operator lift∗ is defined as lift∀
p▷

q where p and q represent the size4 of ᾱ and β̄,
and lift∀

p▷
q is itself inductively defined as follows:

lift⋄q+1e ≜ repack▽ ⟨α, x⟩ = lift∀
p

(lift▷e) in lift⋄qx lift⋄0e ≜ e

lift∀
p+1

e ≜ lift∀(Λα. lift∀
p

(e α)) lift∀
0

e ≜ e

• We allow lift∀ to cross a sequence of quantifiers defining lift∀(q+1)e to be lift∀
(
λα. lift∀qe α

)
and lift∀0e to be e.

• We allow lift→ and lift∀q to be applied to a sequence of quantifiers ∃▼(ᾱ :ω). τ instead of
a single one, defining lift⋄n+1e to be repack▽ ⟨α, x⟩ = lift⋄e in lift⋄nx with lift⋄0e equal to e.

• We define lift∀q→n e to be lift∀qn (lift→n e).

We then simply write lift∗e for lift∀q→n e, leaving the number of iterations n and q implicit
from the type of the argument (taking the longest possible sequence). We have the following
derived typing rule:

F-LiftStar
Γ ⊢ e : ∀α.σ → ∃▽τ (β).σ′

Γ ⊢ lift∗e : ∃▽λα.τ (β′).∀α.σ → σ′[β 7→ (β′ α)]
4p and q are left implicit in lift∗e as they can be determined from the type of the argument e

96 CHAPTER 4. Mω

4.4.5 Implementation of Transparent Existential Types in Fω

Interestingly, transparent existential types are completely definable in plain Fω (with kind
polymorphism). A concrete implementation is given in Figure 19, with and without syntactic
sugar.

We first define a record e0 with the constructs, which is actually pretty simple: most
fields are η-expansions of the identity. Then, we define a type expression τE , and use normal
(opaque) existentials of Fω to pack e0: eE = pack ⟨τ0, e0⟩ as τE where τ0 is the interface type
that hides the implementation of the type E . Using this definition, we may see a program e
using transparent existential types as a program unpack ⟨E , xE ⟩ = eE in e in plain Fω, with
the following additional syntactic sugar5:

∃▽τ (β :κ).σ ≜ Eκ τ (λ(β :κ).σ)

pack e as ∃▽τ (α).σ ≜ xE .Pack τ (λ(α :_).σ) e

repack▽ ⟨α, x⟩ = e1 in e2 ≜ xE .Repack _ _ _ (Λ(α :_).λ(x : α).e2)

seal e ≜ xE .Seal _ _ e

lift→e ≜ xE .Lift→ _ _ e

lift∀ e ≜ xE .Lift∀ _ _ e

We also write repack♢ ⟨α, x⟩ = e1 in e2 and lift♢⟨ᾱ, x1 = e1 @ e2⟩ where ♢ stands for either ▽
or ▼.

Sound by construction The key take-away of this implementation is that it inherits sound-
ness from Fω: we do not need to do a soundness proof of the extended language. We verified
this implementation in an Fω prototype and in Coq via a shallow embedding.

4.4.6 Elaboration

As for Mω, the elaboration relies on a subtyping judgment and a typing judgment for both
signatures and modules. However, as Mω signatures are already Fω types, we can reuse the Mω

elaboration judgment (although we should now reread it with implicit kinds). Specifically,
neither Mω signatures nor its typing contexts mention transparent existential types. This is a
key observation: transparent existential types may only appear in types of module expressions.
This means that values of such types are never bound to a variable (during elaboration), which
would otherwise force them to appear in the typing context. Instead, transparent existential
types are always lifted to the top of the expression (using the lift operators).

There are two main elaboration judgments, for subtyping and typing.

• Γ ⊢ M : ∃♢α.C ⇝ e the typing of the module expressions and the declarations. In
addition to the signature, an evidence term e is produced. The judgment is also defined
for bindings Γ ⊢A D : ∃♢α.D⇝ e

• Γ ⊢ C ≺: C′⇝ f the subtyping between Mω signatures, extended to return the explicit
coercion function f . The judgment is also defined for declarations Γ ⊢ D ≺: D′⇝ f

Properties of those two judgments are stated and proved in the next section, Theorem 7.

Subtyping

Subtyping rules are given in Figure 21 and discussed below.
5Here, _ stands for kinds or types that are left implicit as they can be straightforwardly inferred from

other arguments. We also extend transparent existentials with sequences of abstractions as we did for opaque
existentials.

4.4. THE FOUNDATIONS: Fω ELABORATION 97

e0 ≜

Pack = Λω.Λ(α :ω).Λ(φ :ω� ⋆).λ(x : φα).x
Seal = Λω.Λ(α :ω).Λ(φ :ω� ⋆).λ(x : φα).pack ⟨α, x⟩ as ∃▼(α :ω). φ α
Repack = Λω.Λ(α :ω).Λ(φ :ω� ⋆).λ(x : Eω α φ).

Λ(ψ :ω� ⋆).λ(f : ∀(α :ω). φ α→ ψ α).(f α x)
Lift→ = Λω.Λ(α :ω).Λ(φ :ω� ⋆).Λ(β : ⋆).λ(f : β → φα).f
Lift∀ = Λω.Λω.Λ(α :ω�ω).Λ(φ :ω�ω� ⋆).λ(x : (∀(β :ω). φ β(αβ))).x

τ0 ≜ Λω.λ(α :ω).λ(φ :ω� ⋆).φ α

τE ≜ ∃▼(E :∀ω.ω� (ω� ⋆)� ⋆).

Pack : ∀ω.∀(α :ω).∀(φ :ω� ⋆).φ α→ Eω α φ
Seal : ∀ω.∀(α :ω).∀(φ :ω� ⋆).Eω α φ→ ∃▼(α :ω). φ α
Repack : ∀ω.∀(α :ω).∀(φ :ω� ⋆).Eω α φ→

∀(ψ :ω� ⋆).(∀(α :ω). φ α→ ψ α)→ Eω α ψ
Lift→ : ∀ω.∀(α :ω).∀(φ :ω� ⋆).∀(β : ⋆).

(β → Eω α φ)→ Eω α (λ(α :ω).β → φα)
Lift∀ : ∀ω.∀ω.∀(α :ω�ω).∀(φ :ω�ω� ⋆).

(∀(β :ω).Eω (αβ) (φβ))→
E (ω�ω)α (λ(α :ω�ω).∀(β :ω). φ β (αβ))

eE ≜ pack ⟨τ0, e0⟩ as τE

(a) Implementation of transparent existentials as a library in Fω with (predicative) kind polymorphism.
The (kind-polymorphic) operator E should be understood as the transparent existential quantifier.

e0 ≜

Pack = Λα.Λφ.λ(x : φα).x
Seal = Λα.Λφ.λ(x : φα).pack ⟨α, x⟩ as ∃▼α. φα
Repack = Λα.Λφ.λ(x : Eα φ).Λψ.λ(f : ∀α. φα→ ψ α).(f α x)
Lift→ = Λα.Λφ.Λβ.λ(f : β → φα).f
Lift∀ = Λα.Λφ.λ(x : (∀β. φ β(αβ))).x

τ0 ≜ λα.λφ .φα

τE ≜ ∃▼(∃▽.).
Pack : ∀α.∀φ .φα→ ∃▽αβ. φβ

Seal : ∀α.∀φ .∃▽αβ. φβ → ∃▼β. φβ

Repack : ∀α.∀φ .∃▽αβ. φβ → ∀ψ .(∀α. φα→ ψ α)→ ∃▽αβ. ψβ

Lift→ : ∀α.∀φ .∀β.(β → ∃▽αγ. φγ)→ ∃▽αγ.(β → φγ)γ
Lift∀ : ∀α.∀φ .(∀β.∃▽αβγ.(φβ)γ)→ ∃▽αγ.(∀β.φ β (αβ))γ

eE ≜ pack ⟨τ0, e0⟩ as τE

(b) Same implementation as above, but with omitted kinds and syntactic sugar for the transparent
existential operator. We write a type variable as subscript as a shortcut to indicate that it is the free
type variable (via an η-expension): φβ for λβ.(φβ).

Figure 19: Implementation of transparent existentials as a library in Fω (with and without
syntactic sugar)

98 CHAPTER 4. Mω

1 Notation "⋆" := Type.
2

3 Definition Pack (κ : ⋆) (α : κ) (φ : κ →⋆) (x : φ α) := x.
4 Definition Seal (κ : ⋆) (α : κ) (φ : κ →⋆) (x : φ α) := existT φ α x.
5 Definition Repack (κ : ⋆) (α : κ) (φ : κ →⋆) (x : φ α)
6 (ψ : κ →⋆) (f : forall β, φ β →ψ β) := f α x.
7 Definition Lift_ar (κ : ⋆) (α : κ) (φ : κ →⋆)
8 (β : ⋆) (f : β →φ α) := f.
9 Definition Lift_for (ω κ : ⋆) (α : ω →κ) (φ : ω →κ →⋆)

10 (x : forall β : ω, φ β (α β)) := x.
11

12 Record τ (E : forall κ, κ →(κ →⋆) →⋆) := mkTau
13 { pack : forall κ (α : κ) (φ : κ →⋆), φ α →E κ α φ;
14 seal : forall κ (α : κ) (φ : κ →⋆), E κ α φ →{α:κ & φ α};
15 repack : forall κ (α : κ) (φ : κ →⋆), E κ α φ →
16 forall (ψ : κ →⋆), (forall β:κ, φ β →ψ β) →E κ α ψ;
17 lift_ar : forall κ (α : κ) (φ : κ →⋆) (B : ⋆),
18 (B →E κ α φ) →E κ α (fun β ⇒B →φ β);
19 lift_for : forall ω κ (α : ω →κ) (φ : ω →κ →⋆),
20 (forall b:ω, E κ (α b) (φ b)) →
21 E (ω →κ) α (fun (α : ω →κ) ⇒forall (β:ω), φ β (α β)) }.
22

23 Definition τ0 κ (α : κ) φ : ⋆ := φ α.
24 Definition e0 := mkTau τ0 Pack Seal Repack Lift_ar Lift_for.
25 Definition eE := existT τ τ0 e0.

Figure 20: Implementation of transparent existentials in Coq

Declarations As subtyping between declarations is restricted to the equality for type and
value fields, the coercion functions of rules E-Sub-Decl-Val and E-Sub-Decl-Type are just
the identity:

E-Sub-Decl-Val
Γ ⊢ (val x : τ) ≺: (val x : τ)⇝ λx.x

E-Sub-Decl-Type
Γ ⊢ (type t = τ) ≺: (type t = τ)⇝ λx.x

For submodules, the coercion function is just returned directly:
E-Sub-Decl-Mod

Γ ⊢ C ≺: C′⇝ f

Γ ⊢ (module X : C) ≺: (module X : C′)⇝ f

Finally, for module-types, the coercion function is again the identity:
E-Sub-Decl-ModType

Γ, α ⊢ C ≺: C′⇝ f Γ, α ⊢ C′ ≺: C⇝ g

Γ ⊢ (module type T = λα.C) ≺: (module type T = λα.C′)⇝ λx.x

Signatures The rules for signature display coercion functions that are a bit more involved.
First, for structural signatures, the coercion function of each field is gathered separately and
used to produce the result:

E-Sub-Sig-Struct
D0 ⊆ D Γ ⊢ D0 ≺: D

′
⇝ f I ′ = dom(D′

)

Γ ⊢ sig D end ≺: sig D′
end⇝ λx.

{
ℓI′ = f (x.ℓI′)

}
For applicative functors, we have two coercion functions: f for the domain and g for the

codomain:
E-Sub-Sig-AppFct

Γ, α′ ⊢ C′a ≺: Ca[α 7→ τ]⇝ f Γ, α′ ⊢ C[α 7→ τ] ≺: C′⇝ g

Γ ⊢ ∀α.Ca → C ≺: ∀α′.C′a → C′⇝ λx : (∀α.Ca → C).Λα′.λ(y : C′a).g (x τ (f y))

4.4. THE FOUNDATIONS: Fω ELABORATION 99

E-Sub-Sig-Struct
D0 ⊆ D Γ ⊢ D0 ≺: D

′
⇝ f I ′ = dom(D′

)

Γ ⊢ sig D end ≺: sig D′
end⇝ λx.

{
ℓI′ = f (x.ℓI′)

}
E-Sub-Sig-GenFct

Γ, α ⊢ C ≺: C′[α′ 7→ τ]⇝ f

Γ ⊢ ()→ ∃▼α.C ≺: ()→ ∃▼α′.C′⇝ λx.λu.unpack ⟨α, y⟩ = x () in pack ⟨τ , f y⟩ as ∃▼α′.C′

E-Sub-Sig-AppFct
Γ, α′ ⊢ C′a ≺: Ca[α 7→ τ]⇝ f Γ, α′ ⊢ C[α 7→ τ] ≺: C′⇝ g

Γ ⊢ ∀α.Ca → C ≺: ∀α′.C′a → C′⇝ λx : (∀α.Ca → C).Λα′.λy : C′a.g (x τ (f y))

(a) Subtyping between signatures

E-Sub-Decl-Val
Γ ⊢ (val x : τ) ≺: (val x : τ)⇝ λx.x

E-Sub-Decl-Type
Γ ⊢ (type t = τ) ≺: (type t = τ)⇝ λx.x

E-Sub-Decl-Mod
Γ ⊢ C ≺: C′⇝ f

Γ ⊢ (module X : C) ≺: (module X : C′)⇝ f

E-Sub-Decl-ModType
Γ, α ⊢ C ≺: C′⇝ f Γ, α ⊢ C′ ≺: C⇝ g

Γ ⊢ (module type T = λα.C) ≺: (module type T = λα.C′)⇝ λx.x

(b) Subtyping between declarations

Figure 21: Subtyping with elaboration (outputs the coercion function)

The resulting coercion function takes a function x of type ∀α.Ca → C as input, then a set of
type parameters α′, and finally a parameter y of type C′a. To call x, we first specialize it to the
types τ , then coerce y so it has the type Ca[α 7→ τ] by using f . Therefore, we have x τ (f y),
which is of type C[α 7→ τ]. This is itself coerced back into C′ by calling g. Overall, it can be
thought of as being more or less the composition g ◦ (x τ) ◦ f

For generative functors, we have a single coercion function f for the codomain, but we
also need to take care of the existential quantification on both sides, that might differ:

E-Sub-Sig-GenFct
Γ, α ⊢ C ≺: C′[α′ 7→ τ]⇝ f

Γ ⊢ ()→ ∃▼α.C ≺: ()→ ∃▼α′.C′⇝ λx.λu.unpack ⟨α, y⟩ = x () in pack ⟨τ , f y⟩ as ∃▼α′.C′

That is, the coercion function repacks the result of the functor with the right type, using the
coercion function of the codomain.

Typing

To factor notations for the typing judgment, we introduce the meta-variable ϑ that stands
for either an opaque existential ▼ or a transparent one ▽τ together with its witness type τ .
We write mode(ϑ) (resp. mode(ϑ̄)) for the mode of ϑ (resp. the homogeneous sequence ϑ̄),
which is either ▽ or ▼. When a mode is expected without a witness type, we may leave the
projection implicit and just write ϑ̄ instead of mode(ϑ̄). The convention is the same as for
the Mω system.

The judgment Γ ⊢♢ M : ∃ϑ̄ᾱ.C⇝ e extends Mω typing with the elaborated module term e.
The mode♢must coincide with ϑ̄, and may be left implicit, as we did for the corresponding Mω

100 CHAPTER 4. Mω

judgment. Hence, we usually just write Γ ⊢ M : ∃ϑ̄ᾱ.C ⇝ e. A similar, helper judgment
Γ ⊢♢A B : ∃ϑ̄ᾱ.D⇝ e is also defined for bindings. When reading an Mω type environment Γ
in Fω, we must read A.(val x : τ) and A.(module X : C) as Ax : τ and AX : C, etc.

The typing rules are given in Figure 22 and discussed below.

Sequences and structures The key rule for structures is the sequence rule that combines
bindings. It may be concisely written as follows for generative and applicative modes:

E-Typ-Bind-SeqGen
Γ ⊢A B : ∃▼α1.D⇝ e1

Γ, α1, A.D ⊢A B : ∃▼α2.D⇝ e2

Γ ⊢A B, B : ∃▼α1α2.(D,D)⇝
lift▼⟨α1, x1 = e1 @ (let AI1 = x1.ℓI1 in e2)⟩

E-Typ-Bind-SeqApp
Γ ⊢A B : ∃▽τ1(α1).D⇝ e1

Γ, α1, A.D ⊢A B : ∃▽τ2(α2).D⇝ e2

Γ ⊢A B; B : ∃▽τ1τ2(α1α2).(D,D)⇝
lift▽⟨α1, x1 = e1 @ (let AI1 = x1.ℓI1 in e2)⟩

The single field of e1 is concatenated with the fields of e2 after lifting out their existential
bindings. In both cases, the field of e1 is made visible in e2, as well as the existentials in front
of e1—but abstractly. As those two rules are actually similar, they can be factored into a
unified rule E-Typ-Bind-Seq:

E-Typ-Bind-Seq
Γ ⊢A B : ∃ϑ̄1α1.D⇝ e1 Γ, α1, A.D ⊢A B : ∃ϑ̄2α2.D⇝ e2

Γ ⊢A B, B : ∃ϑ̄1ϑ̄2α1α2.(D,D)⇝ lift♢⟨α1, x1 = e1 @ (let AI1 = x1.ℓI1 in e2)⟩

We also have a unified rule for typing structures in both modes:

E-Typ-Mod-Struct
Γ ⊢A B : ∃ϑ̄ᾱ.D⇝ e A /∈ Γ

Γ ⊢ structA B end : ∃ϑ̄ᾱ.sig D end⇝ e

Modes and sealing By default, elaboration is done in applicative mode, hence inferring
transparent existentials, but it can be turned into generative mode when required, using the
floating Rule E-Typ-Mod-Seal, which, unsurprisingly, uses the sealing operator:

E-Typ-Mod-Seal
Γ ⊢ M : ∃▽τ (α).C⇝ e

Γ ⊢ M : ∃▼α.C⇝ seal|α| e

Since signature ascription is defined on paths, it is always applicative (rule E-Typ-Sig-App):

E-Typ-Mod-Ascr
Γ ⊢ S : λα.C Γ ⊢P : C′⇝ e Γ ⊢ C′ ≺: C[α 7→ τ]⇝ f Γ ⊢ τ : ς

Γ ⊢ (P : S) : ∃▽τ (α).C⇝ pack f e as ∃▽τ (α).C

That is, signature ascription (P : S) may introduce new abstract types α as prescribed
by the (elaboration λα.C of the) signature S, but these are transparent existentials in the
type of (P : S). The fact that ascription actually does not introduce opaque existential
is essential for sealing inside applicative functors, a feature often left out of formalization
attempts. Indeed, if ascription were to produce opaque existential, it could not be used inside
an applicative functor.

Elaboration of functors At first glance, the elaboration of functors seems to differ quite
significantly for the applicative case (Rule E-Typ-Mod-AppFct) and the generative case (Rule
E-Typ-Mod-GenFct):

4.4. THE FOUNDATIONS: Fω ELABORATION 101

E-Typ-Mod-Arg
(Y : C) ∈ Γ

Γ ⊢ Y : C⇝ Y

E-Typ-Mod-Var
(A.X : module C) ∈ Γ

Γ ⊢A.X : C⇝AX

E-Typ-Mod-AppFct
Γ ⊢ S : λα.Ca Γ, α, Y : Ca ⊢ M : ∃▽τ (β).C⇝ e

Γ ⊢ (Y : S)→ M : ∃▽λα.τ (β′).∀α.Ca → C
[
β 7→ β′(α)

]
⇝ lift∗(Λα.λ(Y : Ca).e)

E-Typ-Mod-AppApp
Γ ⊢P : ∀α.Ca → C⇝ e Γ ⊢P ′ : C′⇝ e′ Γ ⊢ C′ ≺: Ca[α 7→ τ]⇝ f

Γ ⊢P (P ′) : C[α 7→ τ]⇝ e τ (f e′)

E-Typ-Mod-GenFct
Γ ⊢ M : ∃▼α.C⇝ e

Γ ⊢ ()→ M : ()→ ∃▼α.C⇝ λ(_ : ()).e

E-Typ-Mod-GenApp
Γ ⊢P : ()→ ∃▼α.C⇝ e

Γ ⊢P () : ∃▼α.C⇝ e ()

E-Typ-Mod-Ascr
Γ ⊢ S : λα.C Γ ⊢P : C′⇝ e Γ ⊢ C′ ≺: C[α 7→ τ]⇝ f Γ ⊢ τ : ς

Γ ⊢ (P : S) : ∃▽τ (α).C⇝ pack f e as ∃▽τ (α).C

E-Typ-Mod-Seal
Γ ⊢ M : ∃▽τ (α).C⇝ e

Γ ⊢ M : ∃▼α.C⇝ seal|α| e

E-Typ-Mod-Struct
Γ ⊢A B : ∃ϑ̄ᾱ.D⇝ e A /∈ Γ

Γ ⊢ structA B end : ∃ϑ̄ᾱ.sig D end⇝ e

E-Typ-Mod-Proj
Γ ⊢ M : ∃ϑ̄ᾱ.sig D end⇝ e module X : C ∈ D (fv(C) ∩ α) ⊆ α′

Γ ⊢ M.X : ∃ϑ̄ᾱ.C⇝ clean♢⟨α, α′⟩ (repack♢ ⟨α, x⟩ = e in x.ℓX)

(a) Rules for modules

E-Typ-Bind-Let
Γ ⊢ e : τ ⇝ e

Γ ⊢A (letx = e) : (val x : τ)⇝ {ℓx = e}

E-Typ-Bind-Type
Γ ⊢ u : τ

Γ ⊢A (type t = u) : (type t = τ)⇝ {ℓt = ⟨⟨τ⟩⟩}

E-Typ-Bind-ModType
Γ ⊢ S : λα.C

Γ ⊢A (module type T = S) : (module type T = λα.C)⇝ {ℓT = ⟨⟨λα.C⟩⟩}

E-Typ-Bind-Empty
Γ ⊢A ∅ : ∅⇝ {}

E-Typ-Bind-Mod
Γ ⊢A M : ∃ϑ̄ᾱ.C⇝ e

Γ ⊢A (moduleX = M) : (∃ϑ̄ᾱ.module X : C)⇝ repack♢ ⟨α, x⟩ = e in {ℓX = x}

E-Typ-Bind-Seq
Γ ⊢A B : ∃ϑ̄1α1.D⇝ e1 Γ, α1, A.D ⊢A B : ∃ϑ̄2α2.D⇝ e2

Γ ⊢A B, B : ∃ϑ̄1ϑ̄2α1α2.(D,D)⇝ lift♢⟨α1, x1 = e1 @ (let AI1 = x1.ℓI1 in e2)⟩

(b) Rules for bindings

Figure 22: Typing rules with elaboration

102 CHAPTER 4. Mω

E-Typ-Mod-AppFct
Γ ⊢ S : λα.Ca Γ, α, Y : Ca ⊢ M : ∃▽τ (β).C⇝ e

Γ ⊢ (Y : S)→ M : ∃▽λα.τ (β′).∀α.Ca → C
[
β 7→ β′(α)

]
⇝ lift∗Λα.λ(Y : Ca).e

E-Typ-Mod-GenFct
Γ ⊢ M : ∃▼α.C⇝ e

Γ ⊢ ()→ M : ()→ ∃▼α.C⇝ λ(_ : ()).e

The body of an applicative functor is elaborated to transparent existentials which are lifted,
while in the generative case, the existentials are opaque and cannot be lifted. However, this
difference is largely artificial as a result of using a special argument () to enforce generativ-
ity. Otherwise, the main difference lies in enforcing the body of the functor to be typed in
generative mode, hence with an opaque existential. Since lift∗ is neutral on terms that do
not have transparent existential types, the elaboration of the generative case could also be
written lift∗λ(_ : ()).e, so that the two cases only differ by the modes of elaboration of their
bodies.

Functor applications The corresponding rules for applying applicative functors E-Typ-
Mod-AppApp and generative functors E-Typ-Mod-GenFct are relatively straightforward,
using the normal Fω application:

E-Typ-Mod-AppApp
Γ ⊢ P : ∀α.Ca → C⇝ e Γ ⊢ P ′ : C′⇝ e′ Γ ⊢ C′ ≺: Ca[α 7→ τ]⇝ f

Γ ⊢ P (P ′) : C[α 7→ τ]⇝ e τ (f e′)

E-Typ-Mod-GenFct
Γ ⊢ M : ∃▼α.C⇝ e

Γ ⊢ ()→ M : ()→ ∃▼α.C⇝ λ(_ : ()).e

Projection As expected, projection is elaborated into a record projection, but there is a
catch: the projected module expression M can have existential types. The solution, displayed
in the following simplified rule, is to unpack, project, and pack again, i.e., to repack over the
projection:

E-Typ-Mod-Proj-SIMPLIFIED
Γ ⊢ M : ∃ϑ̄ᾱ.sig D end⇝ e module X : C ∈ D

Γ ⊢ M.X : ∃ϑ̄ᾱ.C⇝ repack♢ ⟨α, x⟩ = e in x.ℓX

As for structures and sequences, we have a single rule for both modes that relies on the mode
of the repack♢ construct. To exactly match the Mω rule M-Typ-Mod-Proj for projection, we
also need to “garbage-collect” the abstract variables that do not appear in the result type.
This is done with a clean♢⟨α, β⟩ e macro that removes the type variables in α that do not
appear in β. It is defined as:

clean♢⟨γα, γβ⟩ e ≜ repack♢ ⟨γ, x⟩ = e in clean♢⟨α, β⟩ x

clean♢⟨γα, γ′β⟩ e ≜ unpack♢ ⟨γ, x⟩ = e in clean♢⟨α, γ′β⟩ x

clean♢⟨∅,∅⟩ e ≜ e

Using this macro, we can define the proper projection rule:

E-Typ-Mod-Proj
Γ ⊢ M : ∃ϑ̄ᾱ.sig D end⇝ e module X : C ∈ D (fv(C) ∩ α) ⊆ α′

Γ ⊢ M.X : ∃ϑ̄ᾱ.C⇝ clean♢⟨α, α′⟩ (repack♢ ⟨α, x⟩ = e in x.ℓX)

4.4. THE FOUNDATIONS: Fω ELABORATION 103

Bindings The elaboration of bindings produces records with a single field. The rules for
value fields, type fields, and module-type fields are straightforward. Using the type encoding
for values, which we recall as:

⟨⟨(τ :ω)⟩⟩ = λ(β :ω� ⋆).λ(x : (β τ)).x

we get the following rules:

E-Typ-Bind-Let
Γ ⊢ e : τ ⇝ e

Γ ⊢A (letx = e) : (val x : τ)⇝ {ℓx = e}

E-Typ-Bind-Type
Γ ⊢ u : τ

Γ ⊢A (type t = u) : (type t = τ)⇝ {ℓt = ⟨⟨τ⟩⟩}

E-Typ-Bind-ModType
Γ ⊢ S : λα.C

Γ ⊢A (module type T = S) : (module type T = λα.C)⇝ {ℓT = ⟨⟨λα.C⟩⟩}

The rule for module bindings displays an extrusion, which, like for the rule of sequences E-
Typ-Bind-Seq, uses repacking:

E-Typ-Bind-Mod
Γ ⊢A M : ∃ϑ̄ᾱ.C⇝ e

Γ ⊢A (moduleX = M) : (∃ϑ̄ᾱ.module X : C)⇝ repack♢ ⟨α, x⟩ = e in {ℓX = x}

Again, we can merge the two modes within a single rule by using the mode-specific repacking.

4.4.7 Properties of elaboration

In this section we state and prove the soundness and correctness of the elaboration of Mω.

Soundness

We start with a lemma regarding subtyping:

Lemma 6 (Soundness of subtyping). The coercion functions are well-typed in Fω. For sub-
typing between signatures, we have:

Γ ⊢ C ≺: C′⇝ f =⇒ Γ ⊢ f : C → C′ (4.1)

For subtyping between declarations, we have (without the syntactic sugar of declarations):

Γ ⊢ (ℓI : τ) ≺: (ℓI : τ ′)⇝ f =⇒ Γ ⊢ f : τ → τ ′ (4.2)

Proof. We proceed by induction on the typing derivation. The proof cases are immediate
applications of the typing rules of Fω.

• E-Sub-Decl-Val and E-Sub-Decl-Type are immediate (the coercion is the identity).
E-Sub-Decl-Mod is immediate by induction hypothesis.

• E-Sub-Decl-ModType: for module-types bindings, we use the fact that the kernel of
subtyping is a subset of type equivalence.

• E-Sub-Sig-Struct is immediate by induction hypothesis

104 CHAPTER 4. Mω

• E-Sub-Sig-GenFct: we recall the rule:
E-Sub-Sig-GenFct

Γ, α ⊢ C ≺: C′[α′ 7→ τ]⇝ f

Γ ⊢ ()→ ∃▼α.C ≺: ()→ ∃▼α′.C′⇝ λx.λu.unpack ⟨α, y⟩ = x () in pack ⟨τ , f y⟩ as ∃▼α′.C′

We have Γ, α ⊢ f : C → C′[α′ 7→ τ] by induction hypothesis. From there,

Γ, (x : ()→ ∃▼α.C), α, y : C ⊢ (f y) : C′
[
α′ 7→ τ

]
(By F-App)

=⇒ Γ, (x : ()→ ∃▼α.C), α, y : C ⊢ pack ⟨τ , f y⟩ as ∃▼α′.C′ : ∃▼α′.C′ (By F-Pack)
=⇒ Γ, (x : ()→ ∃▼α.C) ⊢ unpack ⟨α, y⟩ = x () in pack ⟨τ , f y⟩ as ∃▼α′.C′ : ∃▼α′.C′

(By F-Unpack)

We conclude by two applications of F-Abs.

• E-Sub-Sig-AppFct is similar.

We then have the main soundness theorem:

Theorem 7: Soundness

The elaboration of a module expression M returns a term e that is well-typed in Fω and
ensures that M is well-typed in Mω:

Γ ⊢ M : ∃ϑ̄ᾱ.C⇝ e =⇒ Γ ⊢ e : ∃ϑ̄ᾱ.C ∧ Γ ⊢ M : ∃ϑ̄ᾱ.C
Γ ⊢ B : ∃ϑ̄ᾱ.D⇝ e =⇒ Γ ⊢ e : ∃ϑ̄ᾱ.

{
D
}
∧ Γ ⊢ M : ∃ϑ̄ᾱ.D

(4.3)

Proof We proceed by induction on the typing derivation. The cases are mostly immediate
applications of Fω rules.

• Immediate cases: E-Typ-Mod-Arg and E-Typ-Mod-Var are immediate by F-Var. The
rules for value, type and module-type bindings (E-Typ-Bind-Let, E-Typ-Bind-Type,
E-Typ-Bind-ModType) are also immediate by F-Record.

• E-Typ-Mod-AppFct: we recall the typing rule:

E-Typ-Mod-AppFct
Γ ⊢ S : λα.Ca (1) Γ, α, Y : Ca ⊢ M : ∃▽τ (β).C⇝ e (2)

Γ ⊢ (Y : S)→ M : ∃▽λα.τ (β′).∀α.Ca → C
[
β 7→ β′(α)

]
⇝ lift∗(Λα.λ(Y : Ca).e)

By induction hypothesis on (2), we have:

Γ, α, Y : Ca ⊢ e : ∃▽τ (β).C

By F-Abs and F-Tabs, we have

Γ ⊢ (Λα.λ(Y : Ca).e) : ∀β.Ca → ∃▽τ (β).C

We conclude by F-LiftStar.

• E-Typ-Mod-GenFct and E-Typ-Mod-GenApp are immediate by induction hypothesis.

• E-Typ-Mod-AppApp, immediate by induction hypothesis, and using the subtyping
lemma.

4.5. ABSTRACT SIGNATURES 105

Theorem 8: Completeness

Well-typed Mω terms and bindings can always be elaborated:

Γ ⊢ M : ∃♢ᾱ.C =⇒ ∃e, ϑ̄, Γ ⊢ M : ∃ϑ̄ᾱ.C⇝ e ∧ mode(ϑ̄) = ♢
Γ ⊢ B : ∃♢ᾱ.D =⇒ ∃e, ϑ̄, Γ ⊢ B : ∃ϑ̄ᾱ.D⇝ e ∧ mode(ϑ̄) = ♢

(4.4)

Proof Sketch. Completeness can be easily established as the elaboration rules mimic the Mω

typing rules with no additional constraints on the premises, except for transparent existentials.
However, these only appear on the types of elaborated modules as a positive information,
which is never restrictive. In particular, a transparent existential type is always used abstractly
and pushed in the context after dropping the witness type exactly as an opaque existential
type, i.e., as in Mω.

4.5 Abstract signatures

In this section we extend Mω with abstract signatures. We restrict abstract signatures to
simple abstract signatures (as presented in Section 2.4.3): abstract signatures can only be
instantiated by signatures that do not contain abstract module-type bindings. Yet, “simple”
is a bit misleading: the polymorphism that is provided by simple abstract signatures is not
just at the level of types, but also at the structure of types themselves. In the rest of this
section, we refer to signatures that are not abstract as concrete signatures (they might contain
abstract signatures as fields)

In Section 4.5.1, we introduce the key points of the encoding of abstract signatures via
examples. In Section 4.5.2, we extend Fω (and Mω) with functions and tuples at the kind level
to represent the form of polymorphism provided by abstract signatures. In Section 4.5.3, we
present the extended typing rules of Mω.

4.5.1 Key intuitions of abstract signatures

In this subsection we introduce the key intuitions of abstract signatures through examples.
The extensions presented here (mostly to the kind system) are formally given in Section 4.5.2.

Ascription Abstract signatures in positive positions are easy: they act as existentially
quantified types. Informally, after ascription with the following left-hand side source signature,
we would get the right-hand side Mω signature (using the variable Ψ for an abstract signature
variable):

1 sigA
2 module type T = A.T
3 moduleX1 : A.T
4 moduleX2 : A.T
5 end

1 ∃Ψ.sig
2 module type T = Ψ
3 module X1 : Ψ
4 module X2 : Ψ
5 end

An important point here is that we do not need existential kinds: once the signature has been
abstracted away, the fact that it might have been parametric is not expressible anymore and
therefore, does not matter.

106 CHAPTER 4. Mω

Kind polymorphism and flexroots Let us consider the following functor:

1 moduleF = (Y : sigA module type T = A.T module X : A.T end)→ Y.X

As a first approximation, we could try an Mω signature of F of the following form:

1 module F : ∀Ψ.
2 sig module type T = Ψ module X : Ψ end→ Ψ

Here, the abstract signature variable Ψ can be instantiated by any wellformed signature, but
there is a catch: it cannot by instantiated by a parametric signature, like λα.sig type t = α end
(which is not of kind ⋆). We could fix the signature of F to account for parametric signatures
with a single type parameter:

1 module F : ∀(Ψ : ⋆ � ⋆).∀(α : ⋆).
2 sig module type T = λβ.(Ψβ) module X : (Ψα) end→ (Ψα)

Every occurrence of the abstract signature introduces a new type variable (here, only one α as
there is only one occurrence of T) that is the corresponding parameter of the occurrence. But
what if the signature has several type parameters? The functor should support any number
of type parameters. We can achieve this by using kind polymorphism6 ∀ω. , where the kind
variable ω can be instantiated to represent any arity. To represent arity at the kind level, we
introduce kind tuples that range from the empty kind tuple ∅ to an n-tuple ς1 × · · · × ςn. This
gives us the following kind-polymorphic signature for F (that subsumes the two signatures
presented above):

1 module F : ∀ω.∀(Ψ :ω� ⋆).∀(α :ω).
2 sig module type T = λ(β :ω).(Ψβ) module X : (Ψα) end→ (Ψα)

The type variable α contains all the parameterized types of Ψ for the module X. This idea of
having one variable to hold all the type components of a signature is inspired by the (similar)
flexroot concept of Shao [1999]. In our setting, flexroots are not records but mere tuples,
and we abstract over the kind of the flexroot. Every occurrence of the abstract signature
introduces a corresponding flexroot, as every instance might be parameterized differently.

To illustrate this, we consider the following signature:

1 sigA module type T = A.T module X1 : A.T module X2 : A.T end

Here, X1 and X2 have the same signature, but it might be parameterized by different types:
each have its own flexroot. This gives the following signature in Mω:

1 Λω.λΨ, α1, α2.sig module type T = λα.(Ψα) module X1 : (Ψα1) module X2 : (Ψα2) end

By instantiation and reduction, we can get a signature whereX1 andX2 have different types:

1 sig
2 module type T = λα.sig type t = α end
3 module X1 : sig type t = int end
4 module X2 : sig type t = bool end
5 end

Kind functions However, first-order kind polymorphism is not enough: due to the presence
of higher-order functors, we need higher-order kinds to express all possible forms of sharing

6We used kind polymorphism already in Section 4.4.5 for the implementation of transparent existentials as
a library in Fω. Then, it was only to have a completely internal presentation, without meta-notations. Here,
it is not to circumvent meta-notations, but really to express the right polymorphism.

4.5. ABSTRACT SIGNATURES 107

ℵ := • | ℵ ⇒ ℵ (meta-kinds)
ς := · · · | ∅ | ς × · · · × ς (small kinds)
κ := · · · | λ(ω : ℵ).κ | κκ (large kinds)
τ := · · · | ∅ | τ × · · · × τ (types)
Γ := · · · | (ω : ℵ) (environments)

Figure 23: Extension of Fω with kind functions, kind tuples and meta-kinds.

between an abstract signature in a functor’s codomain and the functor’s parameter. To see
why, let us consider this higher-order functor:

1 module type TA = sigA module type T = A.T module X : A.T end

2 moduleF = (Y : ((Y ′ : TA)→ TA))→ structB end

The functor F could be applied to a functor that either produces a new abstract signature as
output or produces a concrete signature that depends on the parameter signature. Therefore,
the following signature would be too weak:

1 module F : ∀ω0.∀(Ψ0 :ω0 � ⋆).∀(α0 :ω0).
2 ∀ω1.∀(Ψ1 :ω1 � ⋆).∀(α1 :ω1).
3 (sig module type T = λ(β :ω1).(Ψ1 ω1) module X : (Ψ1 α1) end→
4 sig module type T = λ(β :ω0).(Ψ0 ω0) module X : (Ψ0 α0) end)→ sig end

Indeed, with such signature the functor F could not take as input a functor that produces a
concrete signature. Here, we need to skolemize the kind variable to cover all possible cases,
turning ω0 into an higher-order kind Ω. Skolemization happens both at the kind and type
levels: Ψ0 and α0 are turned into kind-polymorphic higher-order types. This gives:

1 module F : ∀Ω.∀(Ψ0 : ∀ω.(ω� ⋆)�ω� (Ωω)� ⋆).∀(α0 :∀ω.(ω� ⋆)�ω� (Ωω)).
2 ∀ω .∀(Ψ1 :ω� ⋆).∀(α1 :ω).
3 (sig module type T = λ(β :ω).(Ψ1 ω) module X : (Ψ1 α1) end→
4 sig module type T = λ(β : (Ωω)).Ψ1 ωΨ1 α1 β
5 module X : (Ψ0 ωΨ1 α1 (α0 ωΨ1 α1)) end)→ sig end

Skolemization This introduction of higher-order kinds to treat higher-order functors via
skolemization strongly resembles Biswas [1995]’s introduction of higher-order types to treat
higher-order functors. While his type system does not have higher-order types (nor applicative
functors), he used skolemization to represent all the possible ways a functor’s codomain might
depend on its domain. This effectively introduces polymorphism over higher-order types, while
no higher-order types are actually introduced. Similarly, we introduce higher-order kinds to
represent all the possible ways the kind of an abstract signature in a functor’s codomain might
depend on its domain, while we do not have kind-parametric signatures.

4.5.2 Extension of Fω

The extended syntax of Fω is summed up in Figure 23. We extended the system in two ways:

• Kind tuples: We add n-ary kind tuples, with the empty tuple being written ∅. At the
level of types, we add the corresponding empty-tuple type ∅, and the n-ary constructor
for type tuples. Those type tuples are not the type of tuples of core language! They are
not at the base kind ⋆, i.e., no term has a type that has a tuple kind.

108 CHAPTER 4. Mω

Γ ⊢ ⋆ : •
(ω : ℵ) ∈ Γ

Γ ⊢ ω : ℵ
Γ ⊢ κ : • Γ ⊢ κ′ : •

Γ ⊢ κ�κ′ : •
Γ, (ω : ℵ) ⊢ κ : •
Γ ⊢ ∀(ω : ℵ).κ : •

∀i ∈ J1, nK . Γ ⊢ ςi : •
Γ ⊢ ς1 × · · · × ςn : •

Γ, (ω : ℵ) ⊢ κ : ℵ′

Γ ⊢ λ(ω : ℵ).κ : ℵ ⇒ ℵ′
Γ ⊢ κ : ℵ′ ⇒ ℵ Γ ⊢ κ′ : ℵ′

Γ ⊢ (κκ′) : ℵ

(a) Wellformedness of kinds

∀i ∈ J1, nK . Γ ⊢ τi : κi
Γ ⊢ τ1 × · · · × τn : κ1 × · · · × κn

Γ ⊢ ∅ : ∅

(b) Extension to type-wellformedness of Fω (in addition to the rules of Figure 17)

Figure 24: Extension of Fω wellformedness

• Kind functions and meta-kinds: We add kind-level lambda-abstractions and kind
applications. In addition, we add an extra layer to “type kind expressions”, which we
call meta-kinds and are denoted with ℵ. The base meta-kind is •, it is the type of plain
kinds. Kind functions have an arrow meta-kind, written ℵ ⇒ ℵ. It is not the meta-kind
of arrow kinds κ�κ′ (the kind of type operators), which are of the base meta-kind •,
but of kind-level functions.

We add the corresponding typing rules, along with a new judgment of kind-wellformedness,
written Γ ⊢ κ : ℵ, in Figure 24. The kind-wellformedness rules are very similar to the type-
wellformedness rules of Fω, just pushed one level higher. All the kinds previously considered
(the base kind ⋆, kind arrows, and polymorphic kinds) are at the base meta-kind •. Only kind
functions are at a higher meta-kind. The rule for kind application is standard. There are no
rules for wellformedness of meta-kinds, they are always wellformed. We introduce β-reduction
at the kind level to reduce kind applications:

(λ(ω : ℵ).κ)κ′ ⇝β κ
[
ω 7→ κ′

]
We consider kinds up to the equivalence defined by the reflexive, symmetric, and transitive
closure of β-reduction and renaming of bound kind variables. We extend type-equivalence
to inject kind equivalence. The other rules of Fω typing are unchanged, except for the kind
variables that appear with a meta-kind. We preferably use the variable Ψ for abstract-
signature variables for the sake of readability, but it should be read as a normal type variable
just as α.

Module-type declarations of Mω For a technical reason that we detail in the next sec-
tion, we need to change the encoding of the module-type fields of signatures and structures.
Until now, signatures were stored in module-type fields as parametric types, following Russo
[2004]:

1 module type T = λα.C

We switch back to existentially quantified signatures, in the style of Rossberg et al. [2014]:

1 module type T = ∃▼α.C

The two presentations are more-or-less equivalent. The only difference lies in the fact that,
with existential signatures, the transformation of the binder from ∃ to ∀ when the signature

4.5. ABSTRACT SIGNATURES 109

is used for a functor parameter does not not have a logic interpretation. This is a minor
technical detail.

4.5.3 Typing rules

Equipped with this extension of the type system, we can present the typing rules for Mω.
For the sake of readability, we leave meta-kinds and most kinds implicits. The core change
is in the signature elaboration, where we use higher-order kinds to represent all the possible
instantiations of a signature. The key mechanisms for kind variables are similar to type
variables: variables are introduced, extruded, and skolemized. In addition, there is a specific
mechanism of lowering that removes kind parametricity in positive position. We discuss the
key rules and mechanisms below.

Introduction The only point where kind-parametric abstract module-types are introduced
is at an abstract module-type binding:

M-Typ-Decl-ModTypeAbs
Γ ⊢A (module type T = A.T) : Λω.λ(Ψ :ω� ⋆).module type T = λ(α :ω).(Ψα)

The abstract signature variable Ψ is lifted, while the set of type parameters α is left inside the
module-type declaration. Elaboration of signatures (and declarations) is not only a parametric
signature but a kind-parametric, type parametric signature of the form Λω.λα.C.

Extrusion When combining declarations together in a sequence, the kind variables are
merged together in front of the declarations as displayed by the following rule:

M-Typ-Decl-Seq
Γ ⊢A D1 : Λω1.λα1.D1 Γ, ω1, α1, A.D1 ⊢A D2 : Λω2.λα2.D2

Γ ⊢A D1, D2 : Λω1, ω2.λα1, α2. D1,D2

Skolemization When elaborating the signature of an applicative functor, we skolemize both
the kind variables and the abstract type variables (which contain abstract signature variables)
of the functor’s body (written here with kinds to explicit the skolemization):

M-Typ-Sig-AppFct
Γ ⊢ S1 : Λω1.λα1.C1 Γ, ω1, α1, (Y : C1) ⊢ S2 : Λω2.λ(α2 :κ2).C2

Γ ⊢ (Y : S1)→ S2 : Λω
′
2.λ(α

′
2 :∀ω.κ2).∀ω1.∀α1.C1 →

(
C2
[
ω2 7→ (ω′

2 ω1)
][
α2 7→ (α′

2 ω1 α1)
])

The kind variables coming from the functor’s body ω2 are skolemized into ω′
2, and each

occurrence ω2 is replaced by (ω′
2 ω1). Abstract type variables coming from the functor’s

body (α2 :κ2) are turned into kind-polymorphic higher-order types (α′
2 :∀ω.κ2); each occur-

rence α2 is replaced by (α′
2 ω1 α2). Finally, we can see that the lambda quantification of the

functor domain is turned into a universal quantification.

Lowering A new mechanism specific to kind variables is lowering. If we consider the type
parameters of a signature that are bound by a lambda binder, they are either turned into uni-
versal quantification when the signature is used as the domain of a functor parameter, or into
existential quantification when the signature is used for ascription or as the codomain of a gen-
erative functor. Kind variables behave differently. While we still want kind-parametricity for
functors (as displayed above), we do not want existential kinds when using a kind-parametric
signature for ascription or the body of generative functors. We use instead lowering to remove

110 CHAPTER 4. Mω

kind parameters, and “lower” them to the base kind ⋆. Let us start with the rule for signature
of generative functors:

M-Typ-Sig-GenFct
Γ ⊢ S : S S = Λω.ΛΨ.λα.λβ.C S ↓ = ∃▼(Ψ′ : ⋆), β.S (∅ (λ(γ :∅).Ψ′)∅)β

Γ ⊢ ()→ S : S ↓

First, the codomain signature S is elaborated. We reorder the types and kind variables to
group together each kind variable ω with the associated signature variable (Ψ :ω� ⋆) and the
flexroots α. The other type variables β are left untouched. Then, we introduce a new abstract
signature variable (Ψ′ : ⋆) at the base kind for each abstract signature variable Ψ (which might
be at a higher kind). Finally, we get the lowered signature S ↓ by instantiating, in S :

• each kind variable ω by the empty tuple kind ∅
• each abstract signature variable Ψ by the constant type function (λ(γ :∅).Ψ′)
• each flexroot α by the empty tuple type ∅; higher-order flexroots are instantiated by

constant type functions that return the empty tuple: λ(_ :∅).∅

Lowering and subtyping The rule for ascription in module expressions M-Typ-Mod-Ascr
also features lowering:

M-Typ-Mod-Ascr
Γ ⊢ P : C Γ ⊢ S : S S = Λω.ΛΨ.λα.λβ.C

S ↓ = λΨ′, β.S (∅ (λ(γ :∅).Ψ′)∅)β Γ ⊢ C < (S ↓ (∃▼α.C′) τ)

Γ ⊢▽ (P : S) : ∃▽Ψ′, β.
(
S ↓ Ψ′ β

)
The elaborated signature S is lowered into S ↓ similarly to M-Typ-Sig-GenFct. Then, the
subtyping is checked between the signature C of the path P and the lowered signature, instan-
tiated by a list of concrete types τ and a list of existential signatures ∃▼α.C′. The returned
signature is the lowered one S ↓, with an eta-expansion to turn the lambda binder into an ex-
istential one. Subtyping between the lowered signature S ↓ rather than the kind-polymorphic
signature S is more restrictive – there are programs that would not typecheck – but we do
it to prevent the introduction of existential kinds. To understand why the instantiation with
existential signatures works, we show the rule in action on an example.

Example 4.5.1. We show the Rule M-Typ-Mod-Ascr in action. Let us assume that the
path P has the following signature C:

1 C ≜ sig
2 module type T = ∃▼α.sig type t = α end
3 module X1 : sig type t = int end
4 module X2 : sig type t = bool end
5 module F : ∀β.sig type t = β end→ sig type t = (β list) end
6 end

Now, we consider the signature S and its elaboration S :

1 S ≜ sigA
2 module type T = A.T
3 moduleX1 : A.T
4 moduleX2 : A.T
5 moduleF : (Y : A.T)→ A.T
6 end

1 S ≜ Λω.λ(Ψ :ω� ⋆).λα1, α2, φ .sig
2 module type T = ∃▼α.(Ψα)
3 module X1 : (Ψα1)
4 module X2 : (Ψα2)
5 module F : ∀β.(Ψβ)→ (Ψ (φβ))
6 end

Here, we do not want to instantiate the signature S directly, as we would get as output a

4.5. ABSTRACT SIGNATURES 111

signature with an existential kind. Instead, we first lower the signature to S ↓, defined as:
S ↓ ≜ λ(Ψ′ : ⋆).(S ∅ (λ(γ :∅).Ψ′)∅∅ (λ(γ :∅).∅))

After β-reduction of the empty-tuple type arguments, we obtain the following signature:

1 S ↓ ≜ λ(Ψ′ : ⋆).sig
2 module type T = Ψ′

3 module X1 : Ψ
′

4 module X2 : Ψ
′

5 module F : Ψ′ → Ψ′

6 end

Finally, before subtyping C and S ↓, we instantiate the latter with (∃▼α.sig type t = α end).
The subtyping is then made field by field. For the module fields, we have:

module X1 : sig type t = int end < ∃▼α.module X1 : sig type t = α end
module X2 : sig type t = bool end < ∃▼α.module X2 : sig type t = α end

This is shown easily by instantiating α with int and bool respectively. For the functor field,
we have the following successive subtyping relations:

module F : ∀β.sig type t = β end→ sig type t = (β list) end
< module F : ∀β.sig type t = β end→ (∃▼α.sig type t = α end) (1)
< module F : (∃▼β.sig type t = β end)→ (∃▼α.sig type t = α end) (2)

The subtyping relation (1) is normal covariance and instantiation, while (2) is justified by the
fact the parameter’s signature is universally quantified, and that β does not appear free in the
codomain:

(∀α.σ → τ) < (∃α.σ)→ τ (α /∈ fv(τ))

Finally, the result signature is S ↓ with a (transparent) existential quantifier:

Γ ⊢ (P : S) : ∃▽Ψ′.(S ↓Ψ′)

Overall, the instantiation by an existential signature creates a signature where abstract types
have been “un-extruded” and “un-skolemized”, and this signature is a supertype of C. But those
abstract types are hidden away in the resulting signature, abstracted by Ψ′. If “un-extrusion”
and “un-skolemization” is not possible, then the subtyping fails and there is a typechecking
error. This would happen for instance with the following signature (inside C):

1 module F : sig type t = int end→ sig type t = (int list) end

The subtyping step (1) would still work, but (2) would fail: it would require the functor to be
more polymorphic than it really is!

Functor application The last technical point is the following rule for functor application:

M-Typ-Mod-AppApp
Γ ⊢ P : ∀ω′.∀α.Ca → C Γ ⊢ P ′ : C′ Γ ⊢ C′ < Ca[α 7→ τ] [ω 7→ ς]

Γ ⊢ P (P ′) : C[α 7→ τ] [ω 7→ ς]

Here, we extend the instantiation mechanism of subtyping to support both instantiation of
kinds and instantiation of types. The instantiation of kinds is guided by the module-type
fields and does not pose a problem for decidability.

Discussion We believe this extension of Mω supports the main use-cases for abstract signa-
tures. It adds some complexity, but overall the treatment of kind variables is quite similar to
type variables. However, if we were to relax the simple abstract signatures criterion and allow

112 CHAPTER 4. Mω

instantiation of abstract signatures by signatures containing abstract module-types, the sys-
tem would become much more involved. Simple abstract signatures can be seen as the level
1 of predicative instantiation. At level 2, we would already need higher-order meta-kinds
and several more quantified variables. We believe that the added complexity is not justified
regarding the absence of known use-cases.

4.6 Discussion

4.6.1 Signature artifacts

Mω signatures are more expressive than source signature, but they may also keep too much
information, revealing the history of the module operations. This may lead to an inferred
signature that is not anchorable, while intuitively providing the same type-sharing information
as a simpler, anchorable signature. This typically happens when a type variable has become
“unreachable”, only appearing in sub-expressions. We have identified two such patterns.

In the following, we use the notation C[α, . . .] to indicate that α appears freely in C and
the notation C[(φα), . . .] to indicate that α appears only in the subexpression (φα). In
particular, C[φ, (φα)] means that α only appears as an argument of φ in C.

Loss of a type argument. The signature ∃φ, α. C[φ, (φα)], could be obtained by exporting
a functor (providing φ) along with a type obtained by applying this functor to an argument
that has later been hidden. The application φα keeps trace that the type was obtained by
applying φ to α. However, since the argument α is not accessible, this information became
useless. By subtyping, we could safely give the module the simpler signature ∃φ, β. C[φ, β]
cutting the (original) link to the functor , which we can state as a subtyping relationship:

∃φ, α. C[φ, (φα)] < ∃φ, β. C[φ, β]

Anchoring the left-hand side will fail since α cannot be anchored, while anchoring the right-
hand might succeed. We do not currently allow this simplification during anchoring, since both
signatures are not isomorphic in Fω as there is no coercion going in the opposite direction.

Loss of a type operator. Similarly, the application of a functor may be exported while the
functor itself became unreachable. For instance, with two applications of the same functor,
we may have a signature of the form ∃φ, α, β. C[α, β, (φα), (φβ)], which is a subtype of, but
not isomorphic to ∃α, β, α′, β′. C[α, β, α′, β′]. In the special case where the functor is called
only once, the signature would be of the form ∃φ, α. C[α, (φα)], which is actually isomorphic
to ∃α, α′. C[α, α′].

It would be interesting to explore how the type system of Mω could capture those forms
of simplifications without visible loss of type-sharing.

Chapter 5

ZipML

In this chapter, we present ZipML, an almost fully syntactic type system for ML modules.
While sharing the same source language as Mω, ZipML directly works with the OCaml-
style syntactic signatures, only enriching them with the new construct of zipper signatures.
ZipML implements early, shallow and lazy strengthening, and does not eagerly inlines type
and module-type definitions. We say that ZipML uses almost fully syntactic signatures, as it
lightly extends the signature language but keeps all of its constructs for inference, while Mω

replaced the signature language with Mω-signatures. ZipML is therefore closer to real-world
implementations of module systems, and should integrate more easily with them.

Code inserts To distinguish ZipML signatures from sources ones, we use the following
convention: ZipML signatures have an orange background (on the right-hand side), as in:

1 moduleM : sig type t = int end 1 moduleM : sig type t = int end

Overview In Section 5.1, we discuss the motivation for a syntactic system, as opposed to
the elaboration approach of Mω (Chapter 3). In Section 5.2, we present the new technical
device of zipper signatures through examples. In Section 5.3, we give the formal definition of
ZipML. In Section 5.4, we introduce zipper simplification, a process analogous to anchoring
that empties useless declarations in zippers. In Section 5.5, we state the soundness theorem
of ZipML. We also give a conjecture regarding the completeness of ZipML against Mω.

113

114 CHAPTER 5. ZIPML

5.1 Motivation and challenges of a syntactic system

In this section, we discuss some downsides of Mω (and more generally, the F-ing (Rossberg
et al. [2014]) approach). Then, we present the core challenges of a syntactic approach, and
give a high-level intuition on how ZipML solves them.

While appealing, the F-ing (Rossberg et al. [2014]) approach actually leads to a significant
gap between the user writable “source” signatures and their internal representations in Fω.
Users are either required to think in terms of the elaboration, while still writing types in the
surface language or to rely on the syntactic types while the internal representation is hidden
away with a reverse translation. Both options are unsatisfactory. In the former case, as the
elaboration can be quite involved and polluted with a lot of type variables, which makes
internal types hard to keep in the users’ mind. In the latter case, the reverse translation
(anchoring) is actually non trivial: it must undo the extrusion and the skolemization of
existential types to rebuild abstract type fields.

Besides, the anchoring raises some challenges:

• The process can fail, because types of Fω, the target language, are more expressive
than signatures of the source language: as a result, some inferred signatures are not
expressible in the source signature syntax – and the program must then be rejected.
This issue, called signature avoidance, discussed in more details below, is a serious
problem in all syntactic approaches that has not yet received a good solution. Those
cases trigger a specific class of typechecking errors that might be tricky to present for
the user, exposing the internal representation of types.

• Printing typechecking errors (whether or not due to signature avoidance), requires the
reverse translation to be extended to “invalid” source signatures, that cannot be written
by the user himself.

• Even when the typechecking succeeds, the Mω type-system combined with the anchoring
is not fully syntactic in the sense of Shao [1999]: if a module expression admits a
signature, not all sub-expressions necessarily do so. This might be counter-intuitive for
the user, as the simple act of exposing a sub-module might make typechecking fail in
nontrivial ways.

In the rest of this section, starting with examples in OCaml, we discuss our design for a
new syntactic module system with an OCaml-like syntax, called ZipML. Namely,

• we explain how we can delay and “solve” the signature avoidance problem by zipping
away out-of-scope components;

• we maintain a proper sharing of types, via the so-called strengthening operation [Leroy,
1994], but with a new strategy: early, lazy and shallow ;

• we do not use eager expansion of intermediate types and module-type definitions, so as
to print concise interfaces respecting the user’s intent – an aspect previously ignored in
the whole F-ing (Rossberg et al. [2014]) line of work.

The last two mechanisms have also been designed with efficiency of typechecking in mind.
Laziness allows for more sharing of signatures, which might drastically affect performance
when signatures are very large.

5.1.1 Signature avoidance

At a more abstract level, the signature avoidance problem described in Section 2.3 boils down
to the projection out of a dependent record: given a signature S of a module X that depends
on a type t, as in:

5.1. MOTIVATION AND CHALLENGES OF A SYNTACTIC SYSTEM 115

1 module M = struct type t module X : S end

How can we extract S[t] and keep it wellformed, while it mentions t, that used to be in its
local context? Sometimes there exists a principal signature S’ that is equivalent to S while
avoiding the type t, but sometimes there exists none. The key issue here is to model projection
as a way to delete part of a signature (the type t declaration). However, one could argue
that projection is instead a way to hide part of a signature, making it inaccessible to the user
but not necessarily deleting it. This is for example the stance taken by Harper and Stone
[2000]; Dreyer et al. [2003], as their system is designed to make some components invisible to
the user but not to the typechecker. However, such an approach requires a somewhat ad-hoc
elaboration with reserved names, something along the lines of:

1 module M : sig
2 module HIDDEN : sig type t
3 module VISIBLE : S
4 end

This technique became less popular than the more logically grounded existentials types. We
argue that this original intuition was good, but the technical device to achieve it was too
heavy. Intuitively, we would like to focus on S while keeping the rest of the fields on the side
if needed. A classical technique in functional programming, zippers [HUET, 1997], allows
precisely to extend any tree-like type definition with a zipper to focus on certain part of the
tree while keeping the rest on the side. We therefore change the meaning of projection to be
the focusing1 of a signature unto the projected field, keeping the rest in the zipper context,
also called floating fields. In this simple example, ZipML would return2:

1 moduleM : ⟨type t⟩ S

ZipML uses zippers to preserve relevant type information and therefore, delay the resolution
of signature avoidance until a source signature is forced by ascription. Zippers also behave
gracefully in case of errors, allowing to present users with the exact field names that were
lost during typechecking. In most of this paper, we only need a simpler form of zipper where
we can drop some information, because we never need to unfocus. Namely, we can forget
the name of the sub-module we projected on (here, X) and all fields that may appear after
it, as they cannot appear in S. In Section 5.4, to give a precise meaning to a signature
simplification algorithm where we do need to unfocus, we re-introduce actual zippers, which
we call full zippers.

5.1.2 Strengthening

In path-based systems, accessing a module value in the context needs a special treatment.
Usually, one would expect a typing rule of the form:

Var
(X : S) ∈ Γ

Γ ⊢ X : S

Applied to a module system, this would give:

1 module X : sig type t end = ...
2 module X’ = X

1 module X : sig type t end
2 module X’: sig type t end

But this is unsatisfactory, as duplicating the signature would create two different abstract
types X.t and X’.t that would not be equal! This comes from the fact that type sharing is

1Despite what the name may suggest it is not (to the best of my understanding) linked with the focusing
logic used by Crary [2020] to solve signature avoidance.

2Ignoring the self-references

116 CHAPTER 5. ZIPML

expressed with manifest types [Leroy, 1994], i.e., with explicit equalities between type fields.
As a consequence, when accessing a module, its signature must be rewritten, hence copied, to
refer to the type fields of the original module. This operation, called strengthening, is central
to path-based systems such as OCaml. We write it S/X. ZipML implements strengthening
with three innovations: earliness, shallowness and laziness.

Early strengthening In order to always get a strengthened signature when accessing a
value from the context, there are two solutions: either we apply strengthening early, when
pushing the signature in the context, or late, when retrieving the signature from the context.
ZipML uses the former, as it allows for a simple context access rule.

Shallow and lazy strengthening Rewriting a whole signature to strengthen it can be
costly3 and hinder performance for very large libraries. To prevent useless rewriting while
keeping type sharing, ZipML adopts a lazy version of strengthening: we reuse transparent
signatures (= P < S) to delay the strengthening of S by P, which is computed lazily when
actually accessing or inspecting the signature, and therefore avoids some signature duplication.
When strengthening is actually required on a signature, it remains shallow: only the top level
equalities are rewritten, while the strengthening of the rest of the signature is delayed.

5.1.3 Lazy expansion of definitions

Module languages allow for both type definitions (type t = int * float) and module-type
definitions (module type T = sig .. end). However, while OCaml retains such definitions
internally, as any real-word implementation, Mω, F-ing (Rossberg et al. [2014]) and most
other previous works handle them by eager inlining . Inlining of module-type definitions in
signatures might considerably increase their size and make typechecking of large-scale libraries
with intensive use of modules quite expensive. It also obscures the programmers intent by
inferring large signatures whose names or aliases have been lost. ZipML keeps module-
type definitions internally and in inferred signatures, instead of systematically inlining them.
Consequently the type system relies on a notion of normalization to allow the inlining of
definitions on demand.

5.2 An introduction to floating fields

The main novelty of ZipML is the introduction of floating fields as a way to delay and resolve
instances of the signature avoidance problem. In this section we give an overview of the
mechanism of floating fields, including their interaction with self-references. We first show
how they provide additional expressiveness compared to OCaml. Then, we show how several
zippers are chained together when doing several projections in a row. Finally, we introduce
the mechanism of zipper simplification that allows the removal of useless parts of a zipper
context. In the following subsection, we give examples in OCaml code (without self-references
in structures).

5.2.1 Expressivity

Zippers improve the expressiveness of sources signatures in two ways: they remove signature
avoidance cases (which results in typechecking errors) and they prevent the loss of type-sharing
that could be caused by the abstraction heuristic of OCaml (see Section 2.3.2).

3See the discussion at https://github.com/ocaml-flambda/flambda-backend/pull/1337

https://github.com/ocaml-flambda/flambda-backend/pull/1337

5.2. AN INTRODUCTION TO FLOATING FIELDS 117

Preventing typechecking errors Let us start by giving a precise instance of the pattern
presented in Section 5.1.1:

1 module M = (struct
2 type t
3 module X = struct let l : t list = [] end
4 end).X

If we were to typecheck this in OCaml, (using open or an anonymous functor call to simulate
the anonymous projection), we would get an error:

1 The value "l" has no valid type if "M" is hidden.

Before the projection, the signature of the whole structure is:

1 sigB type t = B.t module X : sigA val l : B.t list end end

When projecting on the module field X, we would like to return directly:

1 sigA val l : B.t list end

This signature is however ill-formed as it refers to the name B.t that has been lost. The solu-
tion is to put the lost fields in a zipper context, accessible via the self-reference B. Therefore,
ZipML would typecheck and return the following signature:

1 moduleM : ⟨B : type t = B.t⟩ sigA val l : B.t list end

The highlighted expression ⟨B : type t = B.t⟩ is a zipper context containing a single floating
field ; it is not a signature, but the content of an out-of-focus signature that is bound to the
self-reference B.

Preventing loss of type-sharing Let us look at a situation where a lost type appears in
other type definitions, as in:

1 module M = (struct
2 type t
3 module X = struct type u = t * bool type v = t * bool end
4 end).X

Here, instead of failing, OCaml abstracts the definition of u and v, not only losing their pair
structure, but also forgetting that these are actually equal types.

1 sig type u type v end (* over-abstraction *)

We say that this is erroneously solved by over-abstraction. While over-abstraction is safe, and
could be obtained by explicit subtyping, it is incomplete. ZipML would return the following
signature:

1 ⟨B : type t = B.t⟩ sig type u = B.t× bool type v = B.t× bool end

This is a better answer, as no type information has been lost.

5.2.2 Chaining zippers

Let us consider how zippers are handled when there are several projections. We define a
module M by projection of a deeply nested submodule:

1 module M = (struct
2 type t
3 module X = struct
4 type u = t list

118 CHAPTER 5. ZIPML

5 module Y = struct type v = t type w = u end
6 end
7 end).X.Y

OCaml would output the following signature, where all type equalities have been lost (which
is a case of over-abstraction):

1 sig type v type w end

By contrast, ZipML would infer the following signature S0:

1 ⟨A : type t = A.t⟩ ⟨B : type u = A.t list⟩ sigC type v = A.t type w = B.u end

Let us detail the process. The complete signature of the structure before the projection is:

1 sigA
2 type t = A.t
3 moduleX : sigB
4 typeu = A.t list
5 moduleY : sigC type v = A.t type w = B.u end

6 end

7 end

It is of the form SA[SB[SC]] , where the inner-most signature SC is placed inside two sur-
rounding signatures. For the first projection on field .X, we turn the outer signature into
a zipper context, which gives us:

〈
SA

〉
SB[SC] . For the second projection on field .Y we

need to project out of a zipper signature, which is not a structural signature. However, it
actually composes well: any operation on a zipped signature correspond to pushing the zipper
context in the environment, doing the operation and popping the zipper context back. For
our projection, we therefore first push the zipper context in the typing environment, leaving
us with SB[SC] . Projecting gives

〈
SB

〉
SC , and popping the zipper context back again

gives:
〈
SA

〉 (〈
SB

〉
SC

)
. Finally, we can merge the two zipper contexts in a single one and

we obtain
〈
SA ; SB

〉
SC . Conceptually, we can sum up those steps as:

(
SA

[
SB

[
SC

]]
.X

)
.Y →

(〈
SA

〉
SB

[
SC

])
.Y (First projection)

→
〈
SA

〉 (
SB

[
SC

]
.Y

)
→

〈
SA

〉 (〈
SB

〉
SC

)
(Second projection)

→
〈
SA ; SB

〉
SC

Interestingly, each component of the zipped contexts SA and SB can be directly accessed
from SC via their self-reference names, respectively A and B.

5.2.3 Zipper simplification

Let us follow-up on the example. We start from the inferred signature S0:

1 ⟨A : type t = A.t⟩ ⟨B : type u = A.t list⟩ sigC type v = A.t type w = B.u end

While S0 is correct, ZipML would simplify it to a more “economical” – yet equivalent –
signature, where useless floating fields have been removed:

1 sigC type v = C.v type w = C.v list end

Let us detail this process of zipper simplification.

5.2. AN INTRODUCTION TO FLOATING FIELDS 119

Inlining and garbage-collection Here, we can see that the second zipper context is not
essential, as we may inline the definition of u in the definition of w, which gives us S1:

1 ⟨A : type t = A.t⟩ ⟨B : type u = A.t list⟩ sigC type v = A.t type w = A.t list end

Then, we see that we have an unused floating field, as the name u does not appear anymore
in the zipped signature. As zippers are static information, not present at runtime, we can
drop the second zipper context, which gives us S2:

1 ⟨A : type t = A.t⟩ ⟨ sigC type v = A.t type w = A.t list end⟩

Reordering Informally the signature S2 could be seen as the result of a projection of the
unzipped signature (using some reserved field Z for the lost projection path):

1 (sigA
2 type t = A.t
3 moduleZ : sigC type v = A.t type w = A.t list end

4 end).Z

In the signature S2 the type field v is an alias to the floating abstract type A.t, which comes
first. However, since the field type t = A.t is floating, hence absent at runtime, it may as
well be moved after the module field Z, provided v becomes the abstract type definition and t
becomes an alias of v:

1 (sigA
2 moduleZ : sigC type v = C.v type w = C.v list end

3 type t = A.Z.v
4 end).Z

The key is that the two unzipped signatures, before their projection, are subtype of one
another, hence equivalent! Floating fields that come after the hole can always be dropped as
they are not present at runtime and cannot be referenced from the signature. This finally
gives us S3, the signature returned by ZipML:

1 sigC type v = C.v type w = C.v list end

In this case, we were able to eliminate all floating fields and therefore resolve signature avoid-
ance without using zippers in the resulting signature. Interestingly, having a better heuristic
in OCaml would not have been sufficient to obtain this signature: between the two projec-
tion, we went through a step where the intermediate signature ⟨SA⟩ SB [SC] is not expressible
without zippers.

In general, the simplification may remove some but not all floating fields. This is fine,
as we are able to pursue typechecking in presence of floating fields, which may perhaps be
dropped later on.

Signature avoidance in normal OCaml workflow Developers usually write implemen-
tation file .ml together with an interface file .mli. When typechecking, if an .mli is present,
an ascription is made between the content of the .ml file, say M and the content of the .mli
file, say S. The final signature is therefore the result of (M : S). If it succeeds, the signature is
the user-written source signature S, which never contains floating fields. A normal workflow
with ZipML would therefore not exhibit zippers at all in case of success, even if they appeared
internally during typechecking. In other cases, we may return an answer with floating fields,
giving the user the possibility to remove them via a signature ascription, or use zippers to
give a meaningful typechecking error.

120 CHAPTER 5. ZIPML

Normalization
Γ ⊢ S ↓ S′

Path typing
Γ ⊢ P : S

Subtyping
Γ ⊢ S ≤ S′

Signature Typing
Γ ⊢ S

Module Typing
Γ ⊢♢ M : S

Strengthening
S // P and S / P

Environment
extension Γ ⊎ D

Helpers macros

Figure 25: Relationship between the main judgments of ZipML

5.3 Formal presentation

5.3.1 Overview

In this section we give an overview of the typing system. The main judgments and their
dependencies are summed up in Figure 25. In the following, we break down the structure of
the system and role of each judgment.

Subtyping
Γ ⊢ S ≤ S′

Signature Typing
Γ ⊢ S

Module Typing
Γ ⊢♢ M : S

3

1

2

Core The core functionality of the system is
provided by Module Typing, Signature Typ-
ing and Subtyping. Module typing is the entry
point of the typing system: given a module ex-
pression M, it infers its signature S. As users can
write signatures in module expressions, we need
to check their well-formedness via signature typ-
ing, which explains the dependency 1 . Signa-
ture typing also plays the meta-theoretic role of
a wellformedness judgment. As the language fea-
tures ascriptions (explicit and implicit at functor
call), we also need a subtyping judgment. It is used by the module typing, which explains the
dependency 2 . Finally, ZipML has transparent signatures, therefore checking a signature
may require checking subtyping. This explains the dependency 3 .

7

6

5

4

Path typing
Γ ⊢ P : S

Subtyping
Γ ⊢ S ≤ S′

Signature Typing
Γ ⊢ S

Module Typing
Γ ⊢♢ M : S

Qualified types and values However, un-
like Mω, ZipML does not introduce abstract
type variables, for which wellformedness is eas-
ily known, but instead maintains the syntactic
paths and qualified types in inferred signatures4.
Therefore, paths appear everywhere in signatures
and types. We could consider paths as being just
module expressions, as Mω does, but it would
make the whole system mutually recursive and
more complex. Instead, we extract Path Typing

4Even with eager inlining of definitions, abstract type fields are qualified types

5.3. FORMAL PRESENTATION 121

as a separate judgment5. As module expressions
contain paths, typing a module expression may require typing a path, which explains the
dependency 4 . Signature typing and subtyping handle paths, qualified types, and module-
types. Therefore, it depend on path typing: this explains the dependencies 5 and 6 . Finally,
as the system supports applicative functors, paths may contain functor applications. Typ-
ing a functor application requires a subtyping check, which explains the dependency 7 . In
Section 5.3.4, we also define Path resolution, written Γ ⊢ P ▷ S, as a macro to access the
content of the module at P .

a b9

8

Normalization
Γ ⊢ S ↓ S′

Path typing
Γ ⊢ P : S

Subtyping
Γ ⊢ S ≤ S′

Signature Typing
Γ ⊢ S

Module Typing
Γ ⊢♢ M : S

Lazy inlining and normalization ZipML
keeps the user-provided names for types and sig-
natures – unlike Mω which eagerly inlines them.
In practice, it means that accessing a compo-
nent inside a signature, or checking the equality
between two types may require inlining of def-
initions. This is done by the Normalization
judgment. All judgments that need to actually
pattern-match on the head constructor of a sig-
nature depend on normalization, which explains
the dependencies 8 , 9 , and a . Finally, normal-
ization itself need to follow paths to lookup defini-
tions, which explains the dependency b . Overall,
normalization can (and should) be thought of as a part of the underlying signature equivalence
that can be used anywhere in the system. That is, assuming Γ ⊢ S ↓ S′, we have:

Γ ⊢ P : S =⇒ Γ ⊢ P : S′ Γ ⊢♢ M : S =⇒ Γ ⊢♢ M : S′

Γ ⊢ S1 ≤ S =⇒ Γ ⊢ S1 ≤ S′ Γ ⊢ S ≤ S2 =⇒ Γ ⊢ S′ ≤ S2

Strengthening To complete the picture of Figure 25 we need to add helper judgments that
serve as macros, as they do not depend on other judgments. We have the following:

• Delayed strengthening – S//P : adds a syntactic mark on S (a transparent signature)
to delay the strengthening of S by P

• Shallow strengthening – S / P : rewrite all top level abstract types to point to their
counterpart at P , and uses delayed strengthening on deeper definitions.

• Environment extension – Γ ⊎ D : (lazily) strengthens the right-hand part before
pushing it in Γ. It is the key to early strengthening.

Plan We start with the grammar extension and technical details in Section 5.3.2. In Sec-
tion 5.3.3, we present the strengthening helpers. In Section 5.3.4, we define path typing,
normalization. In Section 5.3.5, we present the subtyping judgment. In Section 5.3.6, we
discuss the signature typing judgment. Finally, in Section 5.3.7, we present module typing.

5.3.2 Grammar extensions

ZipML reuses the syntax of Section 5.3.2, with a few extensions presented in Figure 26: we
add zipper signatures and distinguish between signatures with and without zippers.

5As paths are always applicative, the path typing judgment does not need a mode annotation, as opposed
to module typing

122 CHAPTER 5. ZIPML

Zipper context
γ ::= ∅ | A : D | γ ; γ

Signature
S ::= ⟨γ⟩ S (Zipper)
| S̃ (Plain signature)

S̃ ::= (= P < S̃) (Transparent signature)
| Q.T (Module-type)
| ()→ S (Generative functor)
| (Y : S̃)→ S (Applicative functor)
| sigA D end (Structural signature)

Path and Prefix
P ::= ...

| P.A (Zipper access)
Typing environment

Γ ::= ∅ | Γ, A.I : S | Γ, Y : S̃ | Γ, γ
Declaration

D ::= valx : u (Value)
| type t = u (Type)
| moduleX : S (Module)
| module type T = S̃ (Module-type)

Figure 26: Syntax extension for signatures and typing environments

Typing environments Typing environments Γ bind module fields to declarations A.I : S
and functor parameters to signatures Y : S̃. In typing environments module fields are always
prefixed by a self-reference. As we disallow shadowing, every A.I in Γ must be unique. For
convenience, we may write Γ, A.D for the sequence Γ, A.D. Finally, typing environments may
also contain floating fields Γ, γ. By associativity, we identify Γ, (A.D, A′.D

′
) and (Γ, A, D), A′.D

′.

Zippers We introduce zipper signatures, written ⟨γ⟩ S, where γ is the zipper context and S

is the zipped signature. Zipper contexts are themselves sequences of floating fields A : D. In
a zipper

〈
A : D

〉
S, the self-reference A, which is used to access fields of D from S, cannot be

renamed. The concatenation of zippers contexts γ1 ; γ2 is only defined when the domains of
γ1 and γ2 are disjoint, the domain being defined as follows:

dom(∅) = ∅ dom(A : D) = {A} dom(γ1 ; γ2) = dom(γ1) ⊎ dom(γ2)

We may then see a zipper as a map from self-references to declarations and define γ(A)
accordingly. The concatenation of zippers “;” is associative and the empty zipper ∅ is a
neutral element. We identify S and ⟨∅⟩ S and ⟨γ1⟩ ⟨γ2⟩ S and ⟨γ1 ; γ2⟩ S whenever γ1 and γ2
have disjoint domains. Therefore, a signature S can always be written as ⟨γ⟩ S̃ where S̃ is a
plain signature and γ concatenates all consecutive zipper contexts or is ∅ if there are none.
The introduction of zippers requires a new form of path P.A, invalid in source programs, to
access floating fields.6 Finally, we define plain signatures S̃ as those without an initial zipper
(but where sub-terms may contain zippers). Note that a zipper may not appear under a
transparent ascription or a functor parameter.

Invariants We also define several syntactic subcategories of signatures to capture some
invariants.7 The head value form Sv of a signature gives the actual shape of a signature,
which is either a structural signature or a functor. The head normal form Sn is similar, but
still contains the identity of a signature, if it has one, via a transparent ascription.

Sv ::= sigA D end | (Y : S)→ S | ()→ S Sn ::= Sv | (= P < Sv)

Notice that head normal forms (and value forms) are superficial and a signature appearing
withing value forms may itself be of any form. Hence, it may contain inner zippers.

6In the absence of floating fields, self-references could only be at the origin of a path Q.
7For sake of readability, we do not always use the most precise syntactic categories and sometimes just

write S when S may actually be of a more specific form. Conversely, we may use subcategories to restrict the
application of a rule that only applies for signatures of a specific shape.

5.3. FORMAL PRESENTATION 123

Shallow strengthening
sigA D end / P ≜ sigA D[A 7→ P] // P end

(Y : Sa)→ S / P ≜ (Y : Sa)→ (S // P (Y))

()→ S / P ≜ ()→ S

Delayed strengthening (signatures)
(= P ′ < S) // P ≜ (= P ′ < S)〈

γ ; γ′
〉
S // P ≜

(
⟨γ⟩

(〈
γ′
〉
S
))
// P〈

A : D
〉
S // P ≜

〈
A : D[A 7→ P.A] // P.A

〉 (
S[A 7→ P.A] // P

)
S // P ≜ (= P < S) (Other cases)

Delayed strengthening (declarations)
(valx : u) // Q ≜ valx : u

(moduleX : S) // Q ≜ moduleX : (S // Q.X)

(type t = u) // Q ≜ type t = u

(module type T = S) // Q ≜ module type T = S

Environment extension
Γ ⊎ (Y : S) ≜ Γ, Y : (S // Y)

Γ ⊎ (moduleA.X : S) ≜ Γ, moduleA.X : (S // A.X)

Γ ⊎ (
〈
A : D

〉
γ) ≜ (Γ, A : (D // A)) ⊎ γ

Figure 27: Strengthening helpers

To characterize signatures, declarations, and zippers that are fully strengthened, we define
a notion of generalized transparent signature S as either a transparent signature or a zipped
transparent signature. We use this notion to define generalized transparent declarations and
zipper contexts:

S ::= (= P < S̃) | ⟨γ⟩ (= P < S̃) γ ::= A : D | γ ; γ | ∅
D ::= moduleX : S | valx : u | module type T = S | type t = u

Finally, we let P̃ stand for source paths P that do not contain any (direct or recursive) access
to some zipper context (of the form P ′.A). Consistently, Q̃ means P̃ or A and source types
ũ means types u where all paths occurring in u are actually source paths.

5.3.3 Strengthening

The three helper judgments for strengthening are given in Figure 27 and discussed below.

Shallow strengthening is only defined on signatures in head normal form and is used to
push the actual strengthening just one level down. It rewrites only the top level abstract
fields, and delays the deeper ones. This is done by substituting the self-reference by the path:

sigA D end / P ≜ sigA D[A 7→ P] // P end

Here, all type fields that were of the form type t = A.t get rewritten into type t = P.t. Then,
delayed strengthening is applied to all the declarations. Strengthening an applicative functor
amounts to delaying the strengthening of its body, while there is nothing to do for generative
functors (they define a different scope):

(Y : Sa)→ S / P ≜ (Y : Sa)→ (S // P (Y)) ()→ S / P ≜ ()→ S

124 CHAPTER 5. ZIPML

Delayed strengthening The role of delayed strengthening is to insert a transparent as-
cription at the top level of a signature, if there is not one already, and push it under zippers
if any. Transparent signatures already have a delayed strengthening, so we leave them un-
changed (similarly to concrete type definitions).

(= P ′ < S) // P ≜ (= P ′ < S)

For zippers, we have two definitions: one to handle sequences of zippers contexts (left-hand
side) and one to lazily strengthen a single zipper context (right-hand side):

⟨γ ; γ′⟩ S // P ≜
(
⟨γ⟩

(
⟨γ′⟩ S

))
// P

〈
A : D

〉
S // P ≜

〈
A : D[A 7→ P.A] // P.A

〉 (
S[A 7→ P.A] // P

)
For a single zipper

〈
A : D

〉
S, we do three things: (1) we strengthen inside the zipper context

A : D[A 7→ P.A] // P.A, (2) we replace all local accesses by zipper accesses with a substitution,
(3) we strengthen the zipped signature. Delayed strengthening on declarations is straight-
forward: only module declarations are strengthened. We define it on prefixes Q instead of
paths P as delayed strengthening is also used inside zippers.

(valx : u) // Q ≜ valx : u (moduleX : S) // Q ≜ moduleX : (S // Q.X)

(type t = u) // Q ≜ type t = u (module type T = S) // Q ≜ module type T = S

Environment extension Last, Figure 27 defines a helper binary operation ⊎ that we use
to strengthen bindings as they enter the typing environment. We use it to maintain the
invariant that all signatures entering the typing environment are strengthened. It is defined
on functor parameters, declarations, and zipper contexts:

Γ ⊎ (Y : S) ≜ Γ, Y : (S // Y) Γ ⊎ (moduleA.X : S) ≜ Γ, moduleA.X : (S // A.X)

Γ ⊎ (
〈
A : D

〉
γ) ≜ (Γ, A : (D // A)) ⊎ γ

5.3.4 Path typing, resolution and normalization

Since paths include projections and applications, which require recursive lookups and sub-
stitutions, their types are not immediate to deduce. Moreover, signatures in the typing
environment may themselves be module type definitions that must be inlined to be analyzed.
We use path resolution, path typing, and normalization for this purpose.

Path typing

The path typing judgment Γ ⊢ P : S is defined in Figure 28 together with path resolu-
tion Γ ⊢ P ▷ S,Γ ⊢ P ▷ P ′ and discussed below. Intuitively, typing a path P returns all the
environment information about the module at path P , including a potential zipper, an aliasing
information with another path and the signature (not strengthened yet). To factor out a com-
mon pattern-match on the result of path typing, we also introduce path resolution Γ ⊢ P ▷ S
to extract the module content, by dropping the zipper and aliasing information and forcing a
shallow strengthening, and Γ ⊢ P ▷ P ′ to extract the module identity, by dropping the zipper
and signature.

Path resolution The two judgments are defined in Figure 28 by a single rule each. Rule
Res-P-Id simply pattern-matches on the result of signature typing to return the aliasing
information. Rule Res-P-Val pattern-matches on the result of signature typing both to
extract S̃ and to force it to be in head-normal (so that S̃ / P ′ is well-defined).

Res-P-Val
Γ ⊢ P : S S ▷ S′

Γ ⊢ P ▷ S′

Res-P-Id
Γ ⊢ P : ⟨γ⟩ (= P ′ < S̃)

Γ ⊢ P ▷ P ′

5.3. FORMAL PRESENTATION 125

Typ-P-Arg
Y : S ∈ Γ

Γ ⊢ Y : S

Typ-P-Module
moduleA.X : S ∈ Γ

Γ ⊢ A.X : S

Typ-P-Zip
Γ ⊢ P : ⟨γ⟩S γ(A) = D

Γ ⊢ P.A : sig D end

Typ-P-Norm
Γ ⊢ P : S Γ ⊢ S ↓ S′

Γ ⊢ P : S′

Typ-P-Proj
Γ ⊢ P ▷ sig D end moduleX : S ∈ D

Γ ⊢ P.X : S

Typ-P-AppA
Γ ⊢ P ▷ (Y : Sa)→ S Γ ⊢ P ′ : S′ Γ ⊢ S′ ⩽ Sa

Γ ⊢ P (P ′) : S[Y 7→ P ′]

(a) Path typing – Γ ⊢ P : S

Res-P-Id
Γ ⊢ P : ⟨γ⟩ (= P ′ < S̃)

Γ ⊢ P ▷ P ′

Res-P-Val
Γ ⊢ P : ⟨γ⟩ (= P ′ < S̃) S̃ / P ′ = S′

Γ ⊢ P ▷ S′

(b) Path Resolution – Γ ⊢ P ▷ P ′ and Γ ⊢ P ▷ S̃

Figure 28: Path typing and path resolution

In both rules, we assume that zippers have been flattened and defaulting to the empty zipper
if there is no zipper.

Path typing The two leaf rules that do actual lookups are Typ-P-Arg and Typ-P-Module:
Typ-P-Arg
Y : S ∈ Γ

Γ ⊢ Y : S

Typ-P-Module
moduleA.X : S ∈ Γ

Γ ⊢ A.X : S

Normalization can be used at any point to inline module-type definitions (which is expected
for reduction in types):

Typ-P-Norm
Γ ⊢ P : S Γ ⊢ S ↓ S′

Γ ⊢ P : S′

Two rules use path resolution to analyze the signature in a premise: projection and application.
In Rule Typ-P-Proj, we pattern-match on the resolution of the signature of P , and require
that it is a structural signature. This may require any number of normalization steps. We
omitted the self-reference of the signature of P since we know S has been strengthened and
does not use its self-reference anymore. Typing a functor application (Rule Typ-P-AppA)
requires the signature of P to be an applicative functor signature, which may again use
any number of normalization steps followed by a resolution step. We also require the domain
signature to be a supertype of the argument signature. We then return the codomain signature
after substitution of the argument P for the parameter Y .
Typ-P-Proj
Γ ⊢ P ▷ sig D end moduleX : S ∈ D

Γ ⊢ P.X : S

Typ-P-AppA
Γ ⊢ P ▷ (Y : Sa)→ S Γ ⊢ P ′ : S′ Γ ⊢ S′ ⩽ Sa

Γ ⊢ P (P ′) : S[Y 7→ P ′]

Finally, rule Typ-P-Zip accesses a zipper context through its self-reference. The signature
sigA D end of P.A need not be put back inside the zipper context γ, since the signature
⟨γ⟩S, and hence the declarations D, have been strengthened and no longer depend on the
zipper context γ, but only on the typing environment Γ.

Notice that path typing is not deterministic: there may be two signatures S1 and S2 such
that Γ ⊢ P : S1 and Γ ⊢ P : S2, where S1 and S2 are not α-equivalent. This comes from the
floating normalization rule, that may be used any number of times at any depth.

126 CHAPTER 5. ZIPML

Norm-S-Zip
Γ ⊎ γ ⊢ S ↓ S′

Γ ⊢ ⟨γ⟩ S ↓ ⟨γ⟩ S′

Norm-S-Trans-Some
Γ ⊢ S ↓ (= P ′ < S′)

Γ ⊢ (= P < S) ↓ (= P ′ < S′)

Norm-S-Trans-None
Γ ⊢ P ▷ P ′ Γ ⊢ S ↓ S′

Γ ⊢ (= P < S) ↓ (= P ′ < S′)

Norm-S-LocalModType
module type A.T = S ∈ Γ

Γ ⊢ A.T ↓ S

Norm-S-PathModType
Γ ⊢ P ▷ sig D end module type T = S ∈ D

Γ ⊢ P.T ↓ S

Norm-Typ-Res
Γ ⊢ P ▷ P ′

Γ ⊢ P.t ↓ P ′.t

Norm-Typ-Local
typeA.t = u ∈ Γ

Γ ⊢ A.t ↓ u

Norm-Typ-Path
Γ ⊢ P ▷ sig D end type t = u ∈ D

Γ ⊢ P.t ↓ u

Figure 29: Signature and type normalization – Γ ⊢ S ↓ S′

Normalization

The judgment Γ ⊢ S ↓ S′ allows the (head) normalization of a signature S into S′, which inlines
module-type definitions, but only one step at a time. Hence, to achieve the head normal form,
we may call normalization repeatedly. It is defined in Figure 29 and discussed below.

Rule Norm-S-Zip normalizes the zipped signature. We never normalize the zipper context
itself, as we will first access the zipper context and normalize the result afterwards.

Norm-S-Zip
Γ ⊎ γ ⊢ S ↓ S′

Γ ⊢ ⟨γ⟩ S ↓ ⟨γ⟩ S′

Rules Norm-S-Trans-Some and Norm-S-Trans-None allows normalization under a transpar-
ent ascription. If the (partial) normal form of S is itself a transparent ascription, we return it
as is; otherwise, we return its strengthened version by the resolved path P ′.

Norm-S-Trans-Some
Γ ⊢ S ↓ (= P ′ < S′)

Γ ⊢ (= P < S) ↓ (= P ′ < S′)

Norm-S-Trans-None
Γ ⊢ P ▷ P ′ Γ ⊢ S ↓ S′

Γ ⊢ (= P < S) ↓ (= P ′ < S′)

Finally, rules Norm-S-LocalModType and Norm-S-PathModType expand a module-
type definition:

Norm-S-LocalModType
module type A.T = S ∈ Γ

Γ ⊢ A.T ↓ S

Norm-S-PathModType
Γ ⊢ P ▷ sig D end module type T = S ∈ D

Γ ⊢ P.T ↓ S

The judgment Γ ⊢ P.t ↓ u allows normalization of types. Rules Norm-Typ-Res allows the
resolution of the path P while rules Norm-Typ-Local and Norm-Typ-Path inlined the type
definition Q.t.

5.3.5 Subtyping

The subtyping judgment Γ ⊢ S ≤ S̃ is only defined when the both sides are wellformed, and,
until Section 5.4, when the right-hand side does not have zippers. The rules are given in Fig-
ure 30 and discussed below. Overall, subtyping is just a combination of structural subtyping
of records, subtyping of functions (contra-variant on the domain, covariant on the codomain)
and instantiation of abstract types. We actually define a judgment that is parameterized by
a flag to be code-free or general :

5.3. FORMAL PRESENTATION 127

Sub-S-Norm
Γ ⊢ S1 ↓ S′1 Γ ⊢ S2 ↓ S′2 Γ ⊢ S′1 ≤ S′2

Γ ⊢ S1 ≤ S2

Sub-S-Zipper
Γ ⊎ γ ⊢ S1 ≤ S2

Γ ⊢ ⟨γ⟩ S1 ≤ S2

Sub-S-TrAscr
Γ ⊢ S1 / P ≤ S2 / P

Γ ⊢ (= P < S1) ≤ (= P < S2)

Sub-S-LooseAlias
Γ ⊢ S1 / P ≤ S2

Γ ⊢ (= P < S1) ≤ S2

Sub-S-FctG
Γ ⊢ S1 ≤ S2

Γ ⊢ ()→ S1 ≤ ()→ S2

Sub-S-FctA
Γ ⊢ Sa2 ≤ Sa1 Γ ⊎ Y : Sa2 ⊢ S1 ≤ S2

Γ ⊢ (Y : Sa1
)→ S1 ≤ (Y : Sa2

)→ S2

Sub-S-Sig
D0 ⊏≤ D1 Γ ⊎A : D1 ⊢ D0 // A ≤ D2

Γ ⊢ sigA D1 end ≤ sigA D2 end

Sub-S-DynEq
Γ ⊢ S ≲ S′ Γ ⊢ S′ ≲ S

Γ ⊢ S ≈ S′

Sub-T-Norm
Γ ⊢ u1 ↓ u Γ ⊢ u2 ↓ u

Γ ⊢ u1 ≤ u2

Sub-D-Mod
Γ ⊢ S1 ≤ S2

Γ ⊢ moduleX : S1 ≤ moduleX : S2

Sub-D-Val
Γ ⊢ u1 ≤ u2

Γ ⊢ valx : u1 ≤ valx : u2

Sub-D-Modtype
Γ ⊢ S1 ≈ S2

Γ ⊢ module type T = S1 ≤ module type T = S2

Sub-D-Type
Γ ⊢ u1 ≈ u2

Γ ⊢ type t = u1 ≤ type t = u2

Figure 30: Subtyping – Γ ⊢ S ≤ S̃

• Γ ⊢ S ≲ S̃ is code-free subtyping. We define code-free equivalence as its kernel.

• Γ ⊢ S ⩽ S̃ is general subtyping, possibly not code-free

The two differ only in the width rule for structural signatures.

Sub-S-Sig
D0 ⊏≤ D1 Γ ⊎A : D1 ⊢ D0 // A ≤ D2

Γ ⊢ sigA D1 end ≤ sigA D2 end

In both cases, a certain subset D0 of the left-hand side fields D1 is chosen to be compared
against the right-hand side fields D2. This comparison is done field-by-field, in parallel, not
as a telescope. As we push D1 in the context, they get strengthened. The subset set of
declarations D0 is also strengthened to correctly refer to D1, possibly deeply.

The main subtyping relation is ⩽ defined as ⩽⊆, i.e., using ⊆ for ⊏⩽. Namely, D0 can be
any subset of D1 where fields may appear in a different order. This relation is (usually) not
code-free, as ML modules are compiled with a static dispatch scheme for performance (see
Section 2.2.3). The code-free version of subtyping, ≲, is defined by setting the relation ⊏≲
as:

D0 ⊏≲ D1 ≜ D0 ⊆ D1 ∧ dyn(D0) = dyn(D1)

where dyn(D) returns the subsequence of D composed of dynamic fields (modules and values)
only (appearing in the same order). We define the dynamic part ⌊S⌋ of a signature S as a
pseudo (untyped) signature that erases all parts of signatures describing static fields:

⌊(= P < S)⌋ ≜ ⌊S⌋
⌊()→ S⌋ ≜ ()→ ⌊S⌋

⌊(Y : Sa)→ S⌋ ≜ ⌊Sa⌋ → ⌊S⌋
⌊sigA D end⌋ ≜ sig ⌊D⌋ end

⌊⟨γ⟩ S⌋ ≜ ⌊S⌋

⌊valx : _ ⌋ ≜ val x
⌊moduleX : S⌋ ≜ moduleX : ⌊S⌋
⌊type t = _ ⌋ ≜ ∅

⌊module type T = _ ⌋ ≜ ∅

Dynamic parts of signatures are then compared syntactically.

128 CHAPTER 5. ZIPML

The other rules are flag-polymorphic, i.e., they are the same for both modes of subtyping
and use the same flag in the premises and conclusion. They must be read by case analysis on
the left-hand side signature. First, normalization is injected anywhere by Rule Sub-S-Norm:

Sub-S-Norm
Γ ⊢ S1 ↓ S′1 Γ ⊢ S2 ↓ S′2 Γ ⊢ S′1 ≤ S′2

Γ ⊢ S1 ≤ S2

For example, there is no rule matching a signature Q.T on the left-hand side, as normalization
allows inlining the definition before checking for subtyping. A zipper may only occur on the
left-hand side. Rule Sub-S-Zipper pushes the zipper context in the typing environment (as
the signature S1 may not be transparent) and pursues with subtyping.

Sub-S-Zipper
Γ ⊎ γ ⊢ S1 ≤ S2

Γ ⊢ ⟨γ⟩ S1 ≤ S2

For other cases, we require the left-hand side to be in head normal form. When the left-hand
side is a transparent ascription, the right-hand side may also be a transparent ascription, in
which case, we check subtyping between the respective signatures, but after pushing strength-
ening one level-down, lazily (Sub-S-TrAscr). Otherwise, we drop the transparent ascription
from the left-hand side, which amounts to a loss of transparency, hence increase abstraction,
as allowed by subtyping (Sub-S-LooseAlias).

Sub-S-TrAscr
Γ ⊢ S1 / P ≤ S2 / P

Γ ⊢ (= P < S1) ≤ (= P < S2)

Sub-S-LooseAlias
Γ ⊢ S1 / P ≤ S2

Γ ⊢ (= P < S1) ≤ S2

In the remaining cases, the left-hand side is a head value form and the right-hand side must
have the same shape. Functor types are contravariant:

Sub-S-FctG
Γ ⊢ S1 ≤ S2

Γ ⊢ ()→ S1 ≤ ()→ S2

Sub-S-FctG
Γ ⊢ Sa2

≤ Sa1
Γ ⊎ Y : Sa2

⊢ S1 ≤ S2

Γ ⊢ (Y : Sa1)→ S1 ≤ (Y : Sa2)→ S2

Rule Sub-S-DynEq defines code-free equivalence, which is a separate judgment. Subtyping
itself is not code-free as it may remove or reorder dynamic fields at runtime.

Declarations

Normalization Subtyping uses two other helper judgments, for type and declaration sub-
typing. There is a single rule Sub-T-Norm for subtyping of core-language types that injects
head type normalization into the subtyping relation, which is the pending of Rule Sub-S-Norm
for core-language types. In fact, this rule should also be made available in the subtyping re-
lation of the core language, which should be a congruent pre-order.

Sub-T-Norm
Γ ⊢ u1 ↓ u Γ ⊢ u2 ↓ u

Γ ⊢ u1 ≤ u2

Values and modules For module declarations (Rule Sub-D-Mod), we just require subtyp-
ing covariantly. Rule Sub-D-Val for core language values is similar, requiring subtyping in
the core language. In OCaml, this would reduce to core-language type-scheme specialization,
which we haven’t formalized:

Sub-D-Mod
Γ ⊢ S1 ≤ S2

Γ ⊢ moduleX : S1 ≤ moduleX : S2

Sub-D-Val
Γ ⊢ u1 ≤ u2

Γ ⊢ valx : u1 ≤ valx : u2

5.3. FORMAL PRESENTATION 129

Types and module-types Since module-types may be used in both covariant and con-
travariant positions, the rule Sub-D-Modtype requests subtyping in both directions. More-
over, since this subtyping could occur deeply inside terms, we use code-free type equivalence,
defined as the kernel of code-free subtyping:

Sub-S-DynEq
Γ ⊢ S ≲ S′ Γ ⊢ S′ ≲ S

Γ ⊢ S ≈ S′

Notice that if signatures were fully inlined, subtyping would never see the names of definitions
but their original inlined expansion and covariance would suffice.

Sub-D-Modtype
Γ ⊢ S1 ≈ S2

Γ ⊢ module type T = S1 ≤ module type T = S2

Sub-D-Type
Γ ⊢ u1 ≈ u2

Γ ⊢ type t = u1 ≤ type t = u2

The same remark applies to core-language type fields, which are also used as definitions and
may appear both co- and contra-variantly. Hence, Rule Sub-D-Type requires Γ ⊢ u1 ≈ u2
which means code-free subtyping in both directions, i.e., Γ ⊢ u1 ≤ u2 and Γ ⊢ u2 ≤ u1.

No rule for abstract types ? The reader might wonder where the rule that allows sub-
typing of concrete type with an abstract type is, of the form Γ ⊢A type t = int ≤ type t.
Actually, our encoding of abstract type as equal to themselves removes the need for such rule.
Let us look at an example subtyping derivation between a signature with concrete type and
a signature with an abstract type:

(A : type t = int) ⊢ int ≈ A.t
(A : type t = int) ⊢A type t = int ≤ type t = A.t

Sub-D-Type

∅ ⊢ sigA type t = int end ≤ sigA type t = A.t end
Sub-S-Sig

The key is that the structural signatures rule Sub-S-Sig puts the declarations of the left-hand
side signature in the context before subtyping the fields. Therefore, the typing environment
contains the declaration A : type t = int. By normalization, it makes A.t and int equivalent.

Subtyping and strengthening

Strengthening adds new equalities, both at the type and module levels. Therefore, it should
not limit subtyping when used on the left-hand side. That is, we have8 Γ ⊢ S // P ≤ S, which
relies on the fact that Γ ⊢ S / P ≤ S. Is proved by a straightforward induction, where the core
argument is illustrated by the derivation above.

Optimization

Judgments Γ ⊢ S1 / P ≤ S2 and Γ ⊢ S1 / P ≤ S2 / P (when both sides are wellformed) are in
fact equivalent. Intuitively, a derivation of the former may abstract some types appearing
in S1 /P , but never has to, i.e., the same derivation could be reproduced without any abstrac-
tion. Therefore, Rule Sub-S-LooseAlias could be replaced by rule Sub-S-LooseAlias-Opt:

Sub-S-LooseAlias-Opt
Γ ⊢ S1 / P ≤ S2 / P

Γ ⊢ (= P < S1) ≤ S2

Sub-S-Sig-Opt
D0 ⊏≤ D1 Γ ⊢ D0 ≤ D2

Γ ⊢ sig D1 end ≤ sig D2 end

8Assuming that both sides are wellformed, i.e., Γ ⊢ S : wf and Γ ⊢ S // P : wf. The definition of wellformed-
ness is given in Section 5.3.6

130 CHAPTER 5. ZIPML

Typ-S-ModType
Γ ⊢ Q̃.T : S

Γ ⊢ Q̃.T

Typ-S-GenFct
Γ ⊢ S

Γ ⊢ ()→ S

Typ-S-AppFct
Γ ⊢ Sa Γ ⊎ (Y : Sa) ⊢ S

Γ ⊢ (Y : Sa)→ S

Typ-S-Ascr
Γ ⊢ S Γ ⊢ P̃ : S Γ ⊢ S ⩽ S

Γ ⊢ (= P̃ < S)

Typ-S-Str
Γ ⊢A D A /∈ Γ

Γ ⊢ sigA D end

(a) Signatures rules

Typ-D-Val
Γ ⊢ ũ

Γ ⊢A (valx : ũ)

Typ-D-Type
Γ ⊢ ũ

Γ ⊢A (type t = ũ)

Typ-D-TypeAbs
Γ ⊢A (type t = A.t)

Typ-D-Mod
Γ ⊢ S

Γ ⊢A (moduleX : S)

Typ-D-ModType
Γ ⊢ S

Γ ⊢A (module type T = S)

Typ-D-Empty
Γ ⊢A ∅

Typ-D-Seq
Γ ⊢A D0 Γ ⊎A.D0 ⊢A D

Γ ⊢A (D0, D)

(b) Declarations rules

Figure 31: Signature and declaration typing (all signatures are S̃) – Γ ⊢ S̃

We may then add Rule Sub-S-Optim, which is an instance of Sub-S-Sig that can be used when
neither side uses its self-reference: we can avoid pushing useless information in the typing en-
vironment. Overall, this comes from the fact that we use subtyping both on signatures coming
from the typing environment (fully strengthened) and signatures coming from inference (not
strengthened) yet. We need to enrich the typing environment only for the latter.

5.3.6 Signature typing

Source signatures provided by users are not necessarily well formed, and thus must be typed,
using the judgment Γ ⊢ S̃, defined in Figure 31. The resulting source signature S̃ is zipper free.
Since this is also enforced by not having a typing rule for zippers, we have not enforced the
syntactic subcategories and just use S and D for signatures and declarations, for the sake of
readability. The signature S̃ should not have zipper-context accesses either, which is enforced
by using the restricted syntactic categories Q̃ and P̃ for paths.

Most of the typing rules are straightforward wellformedness checks. The only involved
rule is Typ-S-Ascr. It checks that the signature S of path P is a subtype of the signature S̃.

Typ-S-Ascr
Γ ⊢ S̃ Γ ⊢ P̃ : S Γ ⊢ S ⩽ S

Γ ⊢ (= P̃ < S)

If we extend the signature language with include, open or the constructs discussed in
Section 6.2.2, signature typing would become a light elaboration, of the form Γ ⊢ S : S′.

Wellformedness

If we have not defined a signature wellformedness judgment earlier, it is because we could
not: checking a signature requires to typecheck paths and subtyping. Adding wellformedness
preconditions everywhere would have made the system more recursively intertwined. Instead,
we define it now as an extension of signature typing, and show that it is maintained throughout

5.3. FORMAL PRESENTATION 131

every judgment. We define Γ ⊢ S : wf with the same rules as signature typing but (1) removing
the condition that paths do not contain zippers, and (2) adding a rule for zippers:

WF-S-Zip
Γ ⊢A D : wf Γ ⊎ D ⊢ ⟨γ⟩ S : wf

Γ ⊢
〈
A : D ; γ

〉
S : wf

We extend wellformedness to environment wellformedness, written ⊢ Γ : wf, as a simple fold
of wellformedness of all components. From there, an immediate induction shows that, assum-
ing ⊢ Γ : wf, we have:

Γ ⊢ S : wf ∧ Γ ⊢ S ↓ S′ =⇒ Γ ⊢ S′ : wf Γ ⊢ P : S =⇒ Γ ⊢ S : wf Γ ⊢ S =⇒ Γ ⊢ S : wf

Subtyping is only defined on wellformed signatures.

Alternative definition Similarly, we could have defined both wellformedness and signature
typing as a single judgment parameterized by a flag to indicate if it enforces no zipper accesses
or not.

5.3.7 Module typing

The rules for the module typing judgment Γ ⊢♢ M : S are given in Figure 32 and discussed
below.

Typ-M-Mode
Γ ⊢▽ M : S

Γ ⊢▼ M : S

Modes The ♢ symbol is a metavariable for modes that ranges
over the applicative (or transparent) mode ▽ and the genera-
tive (or opaque) mode ▼. Rule Typ-M-Mode allows to always
consider an applicative expression as a generative one: This is
a floating rule that can be applied at any time. Judgments for
pure module expressions can be treated either as applicative or generative, hence they use
the ♢ metavariable. Many rules use the same metavariable ♢ in premises and conclusion,
which then stand for the same mode. This implies that if the premise can only be proved in
generative mode, it will also be the case for the conclusion.

Normalization Normalization can be applied at any point. This is required by other rules
that pattern-match on the signature of sub-expressions.

Typ-M-Norm
Γ ⊢♢ M : S Γ ⊢ S ↓ S′

Γ ⊢♢ M : S′

Typ-M-Path
Γ ⊢ P̃ : ⟨γ⟩ (= P ′ < S)

Γ ⊢♢ P̃ : (= P̃ < S)

Paths Typing a path P̃ (which should not contain zipper-
context accesses) as a module expression (Rule Typ-M-Path)
calls the path typing rule defined earlier. It always gives a
transparent signature (= P ′ < S), possibly with a zipper. How-
ever, we return the “more recent” identity (= P̃ < S), as this
is probably the one the user would like to see; besides, the older identities can always be
recovered by normalization, while the reverse is not possible. We drop the zipper as, thanks
to strengthening, it is not accessed by the result signature.

132 CHAPTER 5. ZIPML

Typ-M-Norm
Γ ⊢♢ M : S Γ ⊢ S ↓ S′

Γ ⊢♢ M : S′

Typ-M-Mode
Γ ⊢▽ M : S

Γ ⊢▼ M : S

Typ-M-Ascr
Γ ⊢ S̃ Γ ⊢ P̃ : S Γ ⊢ S ⩽ S̃

Γ ⊢♢ (P̃ : S̃) : S̃

Typ-M-Path
Γ ⊢ P̃ : ⟨γ⟩ (= P ′ < S)

Γ ⊢♢ P̃ : (= P̃ < S)

Typ-M-FctG
Γ ⊢▼ M : S

Γ ⊢♢ ()→ M : ()→ S

Typ-M-AppG
Γ ⊢ P ▷ ()→ S

Γ ⊢▼ P () : S

Typ-M-FctA
Γ ⊢ Sa Γ ⊎ Y : Sa ⊢▽ M : S

Γ ⊢♢ (Y : Sa)→ M : (Y : S′a)→ S

Typ-M-Str
Γ ⊢A B : D A /∈ Γ

Γ ⊢ structA B end : sigA D end

Typ-M-ProjT
Γ ⊢♢ M : ⟨γ⟩ (= P < sigA D, module X : S, D

′
end)

Γ ⊢♢ M.X : ⟨γ⟩ (= P.X < S[A 7→ P])

Typ-M-ProjA
Γ ⊢♢ M : ⟨γ⟩ sigA D, module X : S, D

′
end

Γ ⊢♢ M.X :
〈
γ ;A : D

〉
S

(a) Γ ⊢♢ M : S – Typing rules for module expressions

Typ-B-Seq
Γ ⊢A♢ B0 : D0 Γ ⊎A.D0 ⊢A♢ B : D

Γ ⊢A♢ B0, B : D0, D

Typ-B-Type-Bind
Γ ⊢ ũ

Γ ⊢A♢ (type t = ũ) : (type t = ũ)

Typ-B-Empty
Γ ⊢A♢ ∅ :∅

Typ-B-AbsType
Γ ⊢A♢ (type t = A.t) : (type t = A.t)

Typ-B-Let
Γ ⊢♢ e : u

Γ ⊢A♢ (letx = e) : (valx : u)

Typ-B-Mod
Γ ⊢♢ M : S

Γ ⊢A♢ (moduleX = M) : (moduleX : S)

Typ-B-ModType
Γ ⊢ S̃

Γ ⊢A♢ (module type T = S̃) : (module type T = S̃)

(b) Γ ⊢A♢ B : D – Typing rules for bindings

Figure 32: Typing rules for module expressions and bindings

Ascription A signature ascription (P̃ : S̃) has the signature S̃ provided it is indeed a
supertype of the signature S of P̃ alone, as stated by the Rule Typ-M-Ascr below. This
ascription is opaque since it returns S̃ un-strengthened by P̃ .

Typ-M-Ascr
Γ ⊢ S̃ Γ ⊢ P̃ : S Γ ⊢ S ⩽ S̃

Γ ⊢♢ (P̃ : S̃) : S̃

Functors A generative functor Typ-M-FctG is just an evaluation barrier: the functor itself
is applicative while the body is generative. Correspondingly, applying a generative functor
(Rule Typ-M-AppG), which amounts to evaluating its body, is then generative:

Typ-M-FctG
Γ ⊢▼ M : S

Γ ⊢♢ ()→ M : ()→ S

Typ-M-AppG
Γ ⊢ P ▷ ()→ S

Γ ⊢▼ P () : S

Here, we implicitly rely on the renaming of self-references to make sure that the newly gener-
ated module P () has a fresh self-reference if S is a structural signature. An applicative functor

5.4. RESOLVING SIGNATURE AVOIDANCE BY ZIPPER SIMPLIFICATION 133

definition requires the body to be in applicative mode:

Typ-M-FctA
Γ ⊢ Sa Γ ⊎ Y : Sa ⊢▽ M : S

Γ ⊢♢ (Y : Sa)→ M : (Y : S′a)→ S

There is no application rule for applicative functors, as it is already covered by paths.

Structures and bindings Rule Typ-M-Str for structures delays the work to the typing
rules for bindings, which carry the self-variable A of the structure as an annotation that
should be chosen fresh for the context Γ. The remaining rules are for typing of bindings,
which work as expected. In particular, Rule Typ-B-Seq pushes the declaration A.D0 into the
context while typing the declarations D, much as Typ-D-Seq for signatures:

Typ-M-Str
Γ ⊢A B : D A /∈ Γ

Γ ⊢ structA B end : sigA D end

Typ-B-Seq
Γ ⊢A♢ B0 : D0 Γ ⊎A.D0 ⊢A♢ B : D

Γ ⊢A♢ B0, B : D0, D

Projection The first rule of projection is Typ-M-ProjT, when the module has a transparent
signature:

Typ-M-ProjT
Γ ⊢♢ M : ⟨γ⟩ (= P < sigA D, module X : S, D

′
end)

Γ ⊢♢ M.X : ⟨γ⟩ (= P.X < S[A 7→ P])

In such case, there is no need to introduce a new zipper, substituting A by P.A is enough. Fi-
nally, Rule Typ-M-ProjA for typing a projection M.X where the signature is not transparent,
is the key rule that leverages zippers:

Typ-M-ProjA
Γ ⊢♢ M : ⟨γ⟩ sigA D, module X : S, D

′
end

Γ ⊢♢ M.X :
〈
γ ;A : D

〉
S

Intuitively, it just returns the signature S′ of the field X of the signature S of M zipped around
the initial fields D of S appearing before the field X. Still, we have to consider that the
signature of M may itself be in a zipper context γ, which is then composed with the zipper
context formed of the initial fields D, resulting in γ ;A : D. This fixes the self-reference A,
which is no longer α-convertible.

Missing rules There is no floating subtyping rule. It would not make sense for general
subtyping, which is not code free, but we also did not include a rule for code-free subtyping,
while it would be sound. The rationale is that abstraction should only occur when explicitly
requested by the user, by ascription. Similarly, there is no floating strengthening rule. This
comes from the fact that strengthening is backed in the system and syntax-directed: it happens
only when pushing in the typing environment.

Wellformedness We show by an immediate induction that typing a module expression
(Γ ⊢♢ M : S) in a wellformed environment (⊢ Γ : wf) produces a wellformed signature: Γ ⊢ S : wf

5.4 Resolving signature avoidance by zipper simplification

The type system defined so far only introduces zippers during projection (Rule Typ-M-Proj).
From there, zippers are transported by the other typing rules. They may only be eliminated
by subtyping at an ascription. Yet, conceptually, zipper contexts are a typechecking tool

134 CHAPTER 5. ZIPML

to delay signature avoidance, but should be kept only if they are still needed by the zipped
signature. As we show in the example of Section 5.2.3, there are situations where we can
remove all or part of a zipper context and simplify the signature. In this section, we give a
precise meaning to this simplification.

The key intuition is that, as zippers are not present at runtime, we may extend our notion
of code-free subtyping to allow removal or rewriting of floating fields as long as it does not
affect the (actually present) zipped signature. That is, we want to define a simplifying relation
Γ ⊢ S⇝ S′ as a restricted form of code-free subtyping and add the following rule to the module
typing judgment:

Typ-M-Zip
Γ ⊢ M : ⟨γ⟩ S Γ ⊢ ⟨γ⟩ S⇝ ⟨γ′⟩ S′

Γ ⊢ M : ⟨γ′⟩ S′

Simplifying along subtyping ensures that it is always sound. However, code-free subtyping
may abstract types fields, and doing so would lead to over-abstraction. To show that our
simplification never over-abstracts, we introduce narrow subtyping ⪅ that captures this prop-
erty. While the primary goal of zipper simplification is to eliminate (or reduce) floating fields
in inferred types, this is also useful both to print simpler error messages and to speed up
typechecking.

In Section 5.4.1, we extend code-free subtyping to support zippers on the right-hand side
and define narrow subtyping. In Sections 5.4.2 to 5.4.6, we present a set of (first-order)
simplification rules that are special cases of narrow subtyping. In Section 5.4.7, we describe
an algorithm that implements those rules. Finally, in Section 5.4.8, we discuss why narrow
subtyping and over-abstraction.

5.4.1 Subtyping with zippers and narrow subtyping

Subtyping with zippers

We now extend the definition of subtyping to allow subtyping between signatures containing
zippers on both sides by just adding the following rule (keeping all the previous rules, including
Rule Sub-S-Zipper):

Sub-S-ZipZip
D1

′ ⊆ D1 Γ ⊎A : D1 ⊢ D1
′
⩽ D2 Γ ⊎A : D1 ⊢ S1 ≲ S2

Γ ⊢
〈
A : D1

〉
S1 ≲

〈
A : D2

〉
S2

This rule can be seen as acting on the signatures before the projection, i.e., it commutes
with unzipping. However, as floating fields are not present at runtime, we can use the more
general coercion subtyping on them: subtyping on floating fields is always code-free!

Narrow subtyping

Code-free subtyping allows for over-abstraction, which we want to prevent, while equivalence
prevents the removal of floating fields. We thus define narrow subtyping ⪅ as a restriction of
code-free subtyping that prevents the loss of visible type equalities by the same set of rules,
except for Sub-S-Zipper and Sub-S-Sig which have been replaced by the following variants,

5.4. RESOLVING SIGNATURE AVOIDANCE BY ZIPPER SIMPLIFICATION 135

restricted by additional premises:

Sub-S-SigR
Γ ⊎A : D1 ⊢ D1 // A ⪅ D2

Γ ⊎A : D2 ⊢ D2 // A ⪅ D1

Γ ⊢ sigA D1 end ⪅ sigA D2 end

Sub-S-ZipperR
Γ1 = Γ ⊎A : D1, moduleZ : S1 Γ2 = Γ ⊎A : D2, moduleZ : S2, D2

′

D1
′
⊏ D1

D2
′′
⊏ D2, D2

′
Γ1 ⊢ D1

′
// A ⪅ D2, D2

′

Γ2 ⊢ D2
′′
// A ⪅ D1

Γ1 ⊢ S1 ⪅ S2

Γ2 ⊢ S1 // A.Z ⪅ S2

Γ ⊢
〈
A : D1

〉
S1 ⪅

〈
A : D2

〉
S2

Rule Sub-S-SigR for signatures disallow the removal and reordering of fields and requires field-
by-field subtyping in both directions. Rule Sub-S-ZipperR still allows for D2 to contain fewer
floating fields than D1 and appearing in a different order as Rule Sub-S-Zipper (premises on
the second line). However, it also requires (premises on the last line) the converse subtyping
up to the reintroduction of some floating fields D2

′ that have been dropped from D1. As will
appear in Section 5.4.8, narrow subtyping is somehow the composition of an equivalence –
preventing over-abstraction and reversible – with a projection – removing unreachable floating
fields and irreversible.

5.4.2 Simplification overview

In the rest of this section, we give the specification of a simplification algorithm that transforms
a signature along the narrow subtyping defined in Section 5.4.1, which we can use to reduce
the size of the zipper. When we can remove the zipper altogether, it coincides with solving
signature avoidance. When some floating fields remain, it delays signature avoidance.

Restrictions Our simplification algorithm does not explore all possibilities of narrow sub-
typing, but has some restrictions:

1. Given a signature ⟨γ⟩ S it only tries to remove floating fields from γ, but would not
invent new ones (even if it could make for a smaller zipper context).

2. it does not move fields in the zipped signature S – while code-free subtyping allows it
to – but only does a rewriting of the content of the fields, rewiring the type and module
equalities.

3. it uses a first-order criterion for applicative functors: it only rewrites functor applications
when aliases (for either a lost functor or a lost argument) are available, as does the
anchoring of Mω (Section 4.3.2).

Overview At a high level, the simplification follows three elementary rules (drop, move,
split), as it tries to simplify a single floating component, and one rule to re-organize zippers
(skip). In Section 5.4.3, we discuss simplification by dropping a field. In Section 5.4.4,
we introduce the simplification by moving a field. In Section 5.4.5, we extend the moving
simplification by adding the possibility to split a floating module field. In Section 5.4.6, we
show how to treat floating fields that cannot be simplified. Finally, in Section 5.4.7, we discuss
technical aspects for an algorithm that would implement those simplification techniques.

136 CHAPTER 5. ZIPML

5.4.3 Dropping a field

First, if a floating field is useless, i.e., does not appear in the free variables of the signature,
we may just remove it, as done by Rule Simp-Drop.

Simp-Drop
I = dom(D) A.I /∈ fv(S)

Γ ⊢ ⟨A : D⟩ S⇝ S

This rule maintains wellformedness, as the identifier does not appear in the free variables.
The rule is indeed included in narrow subtyping: the forward subtyping is shown by just
ignoring the declaration D (not putting it in the list of compared declarations D0), while the
reverse subtyping is shown by putting D back (as part of the added declarations D1).

Inlining To simplify fields of zippers, we may use normalization inline floating type defi-
nitions and floating module-type definitions. We may then use Simp-Drop to remove them.
For a non-abstract type field, where u ̸= A.t, we have:

⟨A : type t = u⟩ S ⪅ ⟨A : type t = u⟩ S[A.t 7→ u] ⪅ S[A.t 7→ u]

The first subtyping is just normalization, while the second is Simp-Drop (after the substitu-
tion, A.t is no longer in the free variables of S[A.t 7→ u]).

5.4.4 Moving away a field

However, there are cases where the floating field is not useless (it appears in the signature),
but can still be removed. Indeed, there might be a declaration in S that can take up the same
role as the floating field, without loss of type information, as shown in Section 5.2.3. We start
by considering a floating type field, and we then consider a module field.

Anchoring point

Let us consider a zipper signature ⟨A : D⟩ S where I is the identifier of D. We look for a
declaration that we call the anchoring point for A.I inside S, which we write anchor(Γ, A.I, S)
if it exists. It must validate three conditions:

1. for a type field, it should be of the form type t′ = A.t. For a module identity, it should
be of the form moduleX ′ : (= A.X < S) where S is equivalent to the signature of A.X
(not just a supertype).

2. it must be in a strictly positive position, not inside a functor nor a module type.

3. it must come before any other occurrence of A.I (which are called usage points).

Formally, we have for a type field (the typing environment argument only serves for floating
module fields, we leave it for regularity):

anchor(Γ, A.t, S) = Z.X1.(. . .).Xn.u

if and only if there exists n self-references A0, . . . , An, and n lists of declarations D1, . . . , Dn
and D1

′
, . . . , Dn

′, and n signatures S1, . . . , Sn such that:

S = sigA0
D0 ; module X1 : S1 ; D0

′
end ∧ A.t /∈ fv(D0)

S1= sigA1
D1 ; module X2 : S2 ; D1

′
end ∧ A.t /∈ fv(D1)

...
Sn= sigAn

Dn ; type u = A.t ; Dn
′
end ∧ A.t /∈ fv(Dn)

That is, there is cascade of nested signatures of depth n where A.t is not mentioned until the
field typeu = A.t.

5.4. RESOLVING SIGNATURE AVOIDANCE BY ZIPPER SIMPLIFICATION 137

Contextual path substitution

If there exists an anchoring point for A.t at Z.X1.(. . .).Xn.u, we may remove the floating
field by (intuitively) replacing occurrences of A.I by Z.X1.(. . .).Xn.u. However, the path to
access u is not the same everywhere inside the signature. Therefore, we need a special form
of substitution, contextual path substitution written S[A.t Z⇒ Z.X1.(. . .).Xn.u], which works
as follows:

• we replace typeu = A.t by typeu = An.u (deep in the signature)
• in the declarations Dn

′, u is accessible by An.u, so we may substitute A.t by An.u. There
is nothing to substitute in Dn, as A.t does not appear free.

• in the declaration Dn−1
′, u is accessible by An−1.Xn.u, so we may substitute A.t by

An−1.Xn.u. Again, there is nothing to substitute in Dn−1.
• . . .
• in the declarations D1

′, u is accessible by A1.X2.(. . .).Xn.u, so we may substitute A.t
by A1.X2.(. . .).Xn.u. Again, there is nothing to substitute in D1.

• finally, in the declarations D0
′, u is accessible by A0.X1.(. . .).Xn.u, so we may substitute

A.t by A0.X1.(. . .).Xn.u. There is nothing to substitute in D0.
Basically, when visiting S, it substitutes A.I by A1.X2.(. . .).Xn.u stripped of it common prefix
with the path of the current point (and rewired at the enclosing self-reference).

Simplification rule

Using anchoring points and contextual path substitution, we have the following rule:

Simp-Move
I = dom(()D) anchor(Γ, A.I, S) = Z.P.I ′

Γ ⊢ ⟨A : D⟩ S⇝ S[A.I Z⇒ Z.P.I ′]

Overall, the rule allows to show the narrow subtyping between those two signatures, assuming
that A.t /∈ fv(D0), . . . , A.t /∈ fv(Dn):
⟨A : type t = A.t⟩
sigA0

D0
moduleX1 : sigA1

D1 . . .
Dn−1
moduleXn : sigAn

Dn ;
typeu = A.t ;
Dn

′

endAn

Dn−1
′

...
D1

′

endA1 ;
D0

′

endA0

≈

sigA0

D0;
moduleX1 : sigA1

D1;. . .
Dn−1
moduleXn : sigAn

Dn ;
typeu = An.u ;
Dn

′
[A.t 7→ An.u]

endAn

Dn−1
′
[A.t 7→ An−1.Xn.u]...

D1
′
[A.t 7→ A1.X2.(. . .).Xn.u]

endA1 ;
D0

′
[A.t 7→ A0.X1.X2.(. . .).Xn.u]

endA0

The fact that this rule maintains wellformedness crucially relies on A.t not being in the free
variables of D0, · · · , Dn. To show the narrow subtyping, the forward direction ≲ is easy by
normalization and abstraction. The reverse direction ≲requires to invent a new floating field,
and we choose type t = A.Z.X1.X2.(. . .).Xn.u. We conclude by normalization and reflexivity.

138 CHAPTER 5. ZIPML

Module fields

For a floating module field ⟨A : module X : S⟩, the definition of the anchoring point is the
same, except that it must be a module declaration with a transparent signature:

Sn = sigAn
Dn ; module X ′ : (= A.X < S′) ; Dn

′
end ∧ A.X /∈ fv(Dn)

Besides, we have an additional equivalence condition:

Γ ⊎A0 : D0 ⊎A1 : D1 ⊎ . . . ⊎An : Dn ⊢ S ≈ (S′ / A.X)

Overall, the rule allows to show the subtyping between those two signatures, assuming that
A.t /∈ fv(D0), . . . , A.t /∈ fv(Dn) :
⟨A : module X : S⟩
sigA0

D0 . . .
Dn
moduleX ′ : (= A.X < S′)
Dn

′
...

D0
′

endA0

≈

sigA0

D0 . . .
Dn
moduleX ′ : S
Dn

′
[A.X 7→ An.X

′]...
D0

′
[A.X 7→ A0.X1.(. . .).X

′]
endA0

Again, wellformedness relies on A.X not being in the free variables of D0, · · · , Dn. To show
narrow subtyping, the forward direction ≲ uses reflexivity and normalization. For the an-
choring point, we use Rule Sub-S-LooseAlias and the equivalence condition. The reverse
direction ≲requires to invent a new floating field, and we choose:

moduleX : (= A.Z.X1.(. . .).Xn.X
′ < S)

We again use the equivalence condition to conclude.

5.4.5 Splitting a field

While powerful, the simplification by moving fields might not be enough. We have the fol-
lowing example:

Example 5.4.1 (Splitting a module). We consider the following zipper signature:

⟨A1 : module X : sigA type t = A.t end⟩
sigB typeu = A1.X.t

moduleX ′ : (= A1.X < sigA type t = A.t end) end

We cannot drop the floating module field as A1.X appears in the signature. Second, trying to
apply Simp-move to the field would also fail, as the type A1.X.t is used before an anchoring
point for X. Yet, there is a zipper-less equivalent signature:

sigB type u = B.u module X ′ : sigC type t = B.u end end

5.4. RESOLVING SIGNATURE AVOIDANCE BY ZIPPER SIMPLIFICATION 139

We can obtain this by first introducing a temporary floating field, and then only moving fields:

⟨A1 : module X : sigA type t = A.t end⟩
sigB typeu = A1.X.t

moduleX ′ : (= A1.X < sigA type t = A.t end) end

(Initial signature)

⟨A0 : type t = A0.t⟩ ⟨A1 : module X : sigA type t = A0.t end⟩
sigB typeu = A1.X.t

moduleX ′ : (= A1.X < sigA type t = A.t end) end

(Adding a field)

⪅ ⟨A0 : type t = A0.t⟩ ⟨A1 : module X : sigA type t = A0.t end⟩
sigB typeu = A0.t

moduleX ′ : (= A1.X < sigA type t = A.t end) end

(Normalization)

⪅ ⟨A0 : type t = A0.t⟩
sigB typeu = A0.t

moduleX ′ : sigC type t = A0.t end end

(Moving away the module field)

⪅ sigB typeu = B.u
moduleX ′ : sigC type t = B.u end end

(Moving away the type field)

Simplification rule The splitting rule Simp-Split is meant to be used in conjunction with
the rules for moving and dropping fields, and actually fits quite easily in our setting. We
simply allow to temporarily introduce new floating fields if and only if those additional fields
help the module field get simplified, but get removed in the end. For type field, we have:

Simp-Split-Type
S0 = sigB D end type t = B.t ∈ D

Γ ⊢ ⟨A0 : type t = A0.t ;A : module X : S0[B.t 7→ A0.t]⟩ S⇝ S̃

Γ ⊢ ⟨A : module X : S0⟩ S⇝ S̃

Importantly, this rule applies only if the module X as a structural signature, not a functor
signature. Besides, anchoring points are never inside functors themselves. This is where
the first-order restriction can be seen, as we do not try to split individual fields of functors.
Simplification of functors can only use Rule Simp-Move-Mod. The rule also pattern matches
on the absence of a zipper on the right-hand side signature, therefore only allowing splitting
when it helps simplification.

For modules, we have:

Simp-Split-Mod
S0 = sigB D0 ; module X1 : S1 ; D0

′
end

Γ ⊢ S1 : wf S′0 = sigB D0 ; module X1 : (= A1.X1 < S1) ; D0
′
end

Γ ⊢ ⟨(A1 : module X1 : S1) ; (A : module X : S′0)⟩ S⇝ S̃

Γ ⊢ ⟨A : module X : S0⟩ S⇝ S̃

As for types, we introduce a new floating field to allow A.X and A.X.X1 to be simplified
separately.

5.4.6 Skipping a field

The three simplification rules pattern-match on the right-most floating field. If the right-most
field does not fall into one of the three cases above, we can skip it and leave it as a floating
component. It just amounts to consider the last field D as part of the visible signature.

Simp-Skip
dom(D) = I

Γ ⊢
〈
A : D1

〉
((sigB D; module Z : S end)[A.I 7→ B.I])⇝

〈
A : D1

′
〉
sigB D′; module Z : S′ end

Γ ⊢
〈
A : D1; D

〉
S⇝

〈
A : D1

′
; D′

〉
S′[B.I 7→ A.I]

140 CHAPTER 5. ZIPML

5.4.7 Simplification algorithm

From there, the main challenge is to do all of simplifications presented in the last subsections
as efficiently as possible. In this subsection we consider the simplification of a signature of
the form:

⟨A : D1; . . . ; Dn⟩ S

Each declaration Dk contains the identifier Ik. We present an algorithm that works in three
steps. First, scanning browses the zipper and the signature to collect information about the
usage points of each floating field. Then the constraint resolution computes which floating
field are going to be dropped, moved, split, or skipped. Finally, a simplification pass revisits
the signature to apply the corresponding transformations. We have not implemented this
algorithm yet, but present its proposed structure.

Scanning

We do the first pass with a mutable map θ matching each floating identifier A.Ik with a list
of usage points stored in order of appearance. Each usage point is one of three kinds:

• zipper (A.Iℓ) indicates that A.Ik is used in the floating field A.Dℓ.

• anchor (A.Ik.X.I, Z.X
′
.I ′) is used when the declaration at Z.X ′

.I ′ could serve as an
anchoring point for the subfield A.Ik.X.I if no occurrence of A.Ik appears before Z.X ′

.I ′.

• usage is used otherwise. For module fields where A.Ik is used as a prefix, we store the
whole path, as usage (A.Ik.X.I); otherwise, usage has no argument.

We then define a function visitP (·) that visits the zipper and the signature recursively, in order
of appearance, while updating the map (hence adding new elements to the tail of the list). P
is an optional argument that is only be passed when visiting the zipper body S. Initially, θ
maps each Ik to an empty list. When visiting the zipper context, only zipper (·) usage points
are used.

When visiting the signature S, the optional path argument P indicates the path to the
root Z if still accessible, or none otherwise. The initial call is visitZ S. A type declaration is
first check as a possible anchoring point when the path is nonempty. If not an anchoring point
or if the path is empty, then it is a usage point. The path is set to none for recursive calls
when entering, (1) a functor or a module-type, (2) a submodule with a transparent signature,
as paths reaching inside the submodule are normalized away, and (3) a submodule with a
module-type signature (as normalization should be used first). The initial call is visitZ S.

Constraint resolution

For constraint resolution, we use the information collected in the first pass to compute the
set of simplifications that can be applied to the signature. For that purpose, we introduce
a single assignment map Ω from paths of the form A.Ik.X.I

′ to actions, initially undefined
everywhere, and which may be set once one value among drop, move, split, and skip.
Constraint resolution updates Ω and returns a list of substitutions Θ to be applied to S.

We visit the floating fields Ik in reverse order, i.e., for k ranging from n to 1. We consider
the list θIk of usage points collected in the first phase. We first remove from θIk all usage
points zipper (A.Iℓ) for which Ω(Iℓ) is drop, move, or split, since then Iℓ will be removed
during the simplification. We then scan the list θIk of remaining usage points in order:

• if θIk is empty, we set Ω(Ik) to drop.

• if the head of θIk is anchor (P, P ′) we set Ω(Ik) to move and Θ to [P Z⇒ P ′] ◦Θ.

5.4. RESOLVING SIGNATURE AVOIDANCE BY ZIPPER SIMPLIFICATION 141

• Otherwise, the head of θIk is a usage point. If the field Ik is a module declaration, we
try to split that field. That is, we consider a local assignment map ω for suffixes of A.X
and we go through the list θIk of usage points, with the following cases:

– usage (A.Ik.X.I) : if A.Ik.X.I or any prefix of the form A.Ik.X
′ is already set

to move in ω, we remove the current usage point from θIk, and continue with the
rest of θIk; otherwise, we set Ω(Ik) to skip, and proceed with the successor of Ik
(discarding ω).

– anchor (P, P ′) : if no prefix of P is already set to move, we set ω(A.Ik.X.I) to move
and Θ to [P Z⇒ P ′] ◦Θ.

If all usage points of the modules have been dealt with, we set Ω(Ik) to split and
discard ω.

Simplification

Finally, we return the zipper
〈
A : Dk

k∈1..n∧Ω(A.Ik)=skip〉 (SΘ) whose context just retained the
floating fields set to skip, applying the path contextual substitution Θ to S.

5.4.8 Preservation of typability

In this section we show that narrow subtyping (which includes simplification) never prevents
further typings, i.e., if a typing derivation of M inferred a type S for a subexpression N that
could be simplified into S′, then we could have continued the typing derivation by taking S′

instead of S for the type of N without loosing information (up to further simplifications). The
detailed proof is not included here, we only sketch its structure. Informally, we could say:

If Γ ⊢ M
[
Γ′ ⊢ N : S

]
: S0 and Γ′ ⊢ S ⪅ S′, then Γ ⊢ M

[
Γ′ ⊢ N : S′

]
: S′0 and Γ ⊢ S0 ⪅ S′0.

We prove an almost equivalent, simpler, principality property: If Γ ⊢ M : S is derivable (with
or without simplifications) and Γ′ is a typing environment where simplifications have been
performed, which we write ⊢ Γ ⪅ Γ′, then we have Γ′ ⊢ M : S′ for some S′ that is equivalent to
a simplification of S.

We do so by establishing a correspondence between Γ and Γ′, keeping track of floating
fields that have been simplified, instead marked as eventually removable fields. This enables
a dual view, where removable fields can either be seen or ignored.

Technically, we introduce ZipMLF , a conservative extension of ZipML with full zippers〈
A : D | D′

〉
S. While a simple zipper ⟨A : D⟩ S stands, intuitively, for a signature sigA D,Z :

S, D
′
end that has been projected on field Z, keeping the left floating fields D but forgetting

about the right floating fields D′ that follow the signature S of field Z, a full zipper also retains
the right floating fields, which may then refer to all other floating fields via the label A and to
the signature S via the path A.Z. Hence, a full zipper

〈
A : D | D′

〉
S is well-formed whenever

the signature sigA D,Z : S, D
′
end is. A simple zipper ⟨A : D⟩ S is then just a particular case

⟨A : D |∅⟩ S of a full zipper with an empty sequence of right floating fields.
Strengthening is extended to full zippers in the obvious way, while most definitions treat

zippers abstractly and need not be redefined, 9 except for subtyping: we replace Rule Sub-S-
Zipper (which will be derivable), by the following Rule Sub-S-ZipperF that allows subtyping
between full zippers:

Sub-S-ZipperF
Γ1 = Γ ⊎A : (D1,Z : S, D1

′
) D2

′′
⊏ D1, D1

′
Γ1 ⊢ D2

′′
// A < D2, D2

′
Γ1 ⊢ S1 < S

Γ ⊢
〈
A : D1 | D1

′〉
S1 <

〈
A : D2 | D2

′〉 S
9Definition should respect the unzipped signature view of full zippers.

142 CHAPTER 5. ZIPML

Interestingly, dropping right floating fields is possible as a particular case of subtyping. In
particular, Γ ⊢

〈
A : D | D′

〉
S <

〈
A : D

〉
S always holds. We define the projection of a signature

S, and write ⌊S⌋ for the signature obtained by the removal of all right floating fields of S (in-
cluding deep zippers). While toplevel projection preserves well-formedness, deeper projection
may not—as is usually the case with subtyping.Indeed, while left floating fields of a signature
cannot access its own right floating fields, it can access the right floating fields of another
signature in scope. We say that a signature is projectable if its projection is well-formed. In
particular, it means that the right floating fields of its zippers are not accessed by the rest of
the signature (but can be accessed by other right floating fields).

The key point is that narrow subtyping in ZipML can be seen in ZipMLF as an equiva-
lence ≈ followed by a projection. Therefore, to show that narrow subtyping preserves typing,
we delay the projection in ZipMLF , keeping the projected fields in the right-hand side. This
enables reasoning by equivalences in ZipMLF , and, as long as we preserved projectability,
project the judgments back into ZipML at the end.In fact, the relation Γ ⊢ S ⪅ S′ with sim-
ple zippers in ZipML has been defined to coincide with finding an equivalent signature S′′

in ZipMLF (which usually requires full zippers) whose projection is S′. That is, we have
Γ ⊢ S ⪅ S′ in ZipML is equivalent in ZipMLF to the existence of S′′ whose projection is S′ so
that Γ ⊢ S ≈ S′′.

Technically, we link a typing environment Γ of ZipML (without full zippers) with an
equivalent typing environment Γ′ of ZipMLF , where some signatures have been rewritten
along the equivalence of ZipMLF . We write Γ ⊢ S

▷
≈ S′ to mean Γ ⊢ S ≈ S′ in ZipMLFwhen

S is in ZipML and S′ is projectable. If Γ is in ZipML, this coincides with narrow subtyping.
We extend the notation

▷
≈ to declarations in the obvious way. We then extend it typing

environments with the following rule:

⊢ Γ
▷
≈ Γ′

Γ′ ⊢ D
▷
≈ D

′ ⌊Γ′⌋ ⊢ ⌊D′⌋ : wf

⊢ Γ ⊎A : D
▷
≈ Γ′ ⊎A : D

′

By construction, ⊢ Γ
▷
≈ Γ′ implies that Γ is in ZipML. The premise ⌊Γ′⌋ ⊢ ⌊D′⌋ : wf ensures

that ⌊Γ′ ⊎A : D′⌋ is well-formed.
To establish a tight correspondence between ZipML and ZipMLF , we must not only

project signatures but also judgments—and derivations. We write Γ′ ⌊⊢⌋ S to mean that
both Γ′ ⊢ S : wf holds in ZipMLF and ⌊Γ′⌋ ⊢ ⌊S⌋ : wf holds in ZipML10. We similarly define
Γ′ ⌊⊢⌋ M : S and Γ′ ⌊⊢⌋ S < S′ The principality property, stated at the beginning of this section,
is the projection in ZipML of the following lemma, stated in ZipMLF :

Lemma 9. If Γ ⊢ M : S and ⊢ Γ
▷
≈ Γ′, then there exists S′ such that Γ′ ⌊⊢⌋ M : S′ and Γ′ ⊢ S

▷
≈ S′

Its proof is a combination of reasoning along equivalences, relying on general meta-
theoretical properties of ZipMLF , followed by more specific, but easy results about pro-
jectability, ensuring that not only judgments can be projected, but their derivation can be
done in ZipML.

Simplifications in ZipMLF So far, we have not changed the simplification rule Typ-
M-Simpl. Hence, we cannot do more simplifications in ZipMLF that in ZipML, although
it would be safe to do so. In particular, any simplification along the code-free equivalence
is safe. Doing this, simplifications in ZipMLF could keep removable floating fields as right
floating fields, preparing and enabling their eventual removal later on just by projection.

10That is, the derivation can be conducted without using full zippers.

5.5. PROPERTIES 143

5.5 Properties

In this section we state and prove the soundness of ZipML by elaboration in Mω. This does
not cover zipper simplification. We conjecture the completeness of ZipML with respect to
Mω by sketching a translation from Mω to ZipML.

5.5.1 Soundness of ZipML by Elaboration in Mω

The goal is to show that every module expression that typechecks in ZipML without simpli-
fication also typechecks in Mω (as they have the same source language):

⊢♢ M : S =⇒
ω

⊢ M : ∃♢α.C (For some α, C)

To distinguish between ZipML and Mω judgments, we write
ω

⊢ for judgments in Mω and add
a light red background. We consider Mω with module identities, as presented in Section 4.2.2.
To prove this soundness result by induction on the typing derivations we need to generalize
it to a non-empty typing environment and link the two output signatures. To that aim, we

introduce an elaboration of source typing environments Γ into Mω ones, written
ω

⊢ Γ : Γω .
Using it, the induction hypothesis for the soundness statement becomes:

Γ ⊢♢ M : S ∧
ω

⊢ Γ : Γω =⇒ ∃α, C. Γω
ω

⊢ S : λα.C ∧ Γω
ω

⊢ M : ∃♢α.C (5.1)

Yet, we need to extend Mω elaboration of signatures to support zippers for this statement to
make sense. The rest of this section is composed as follows:

• we first explain the treatment of zippers
• we discuss the elaboration of abstract types in the environment and extend the induction

hypothesis
• we state the elaboration of strengthening, normalization, subtyping and resolution
• we state the elaboration of path typing, signature typing and module typing
• we prove the soundness result

Treatment of zippers

The first difficulty in the soundness statement is that the language of inferred signatures
of ZipML is larger than the source signatures of Mω, with the introduction of zippers sig-
natures ⟨γ⟩ S and zipper-context accesses P.A. Intuitively, zippers are removed at runtime,
and could be removed in Mω. However, to establish a one-to-one correspondence on inferred
signatures, we need to keep zippers in both inferred signatures and the environment also in
Mω. Therefore, we define Mω

zip, an extension of Mω with zipper signatures and zipper context
access. We write γω for Mω zipper contexts. We add the following two rules:

MZip-Typ-S-Zip

Γ
ω

⊢A D : λα.D Γ, A : D
ω

⊢ S : λβ.C

Γ
ω

⊢
〈
A : D

〉
S : λα, β.

〈
A : D

〉
C

MZip-Typ-P-Zip

Γ
ω

⊢ P :
〈
A : D

〉
C

Γ
ω

⊢ P.A : sig D end

We also extend wellformedness and subtyping accordingly. Following the ZipML convention,
we use C̃ to indicate a Mω signature without zipper. However, and this is a key point, we do
not need to redo the soundness of Mω

zip. We only use Mω
zip to have strong-enough induction

hypothesis to link ZipML and Mω signatures. In a typing derivation of Mω
zip that does not use

MZip-Typ-S-Zip nor MZip-Typ-P-Zip, we can erase all zippers and obtain a normal derivation

144 CHAPTER 5. ZIPML

of Mω. Therefore, we extend the induction hypothesis to:

Γ ⊢♢ M : S

ω

⊢ Γ : Γω

 =⇒ ∃α, C.

Γω

ω

⊢ S : λα.C (1)

Γω
ω

⊢ M : ∃♢α.C (2)
(2) can be zip-erased

Elaboration of environments

We now move our attention to the definition of
ω

⊢ Γ : Γω , the elaboration of typing environ-
ments. A technical point arises from the representation of abstract types as self-referring
signatures in ZipML typing environments, as opposed to the existential type variables of Mω.
For instance, consider an environment extended with a type declaration: Γ; (A : type t = A.t).
We want a rule of the form:

ω

⊢ Γ : Γω

ω

⊢ Γ, (A : type t = A.t) : Γω, α,A : type t = α

Yet, we cannot just elaborate type t = A.t in Γω, as it ill-formed: Γω does not contain a
binding for A.t (yet). The solution is to use a rule that captures the property that bindings
of Γ are self-referring:

ω

⊢ Γ : Γω Γω, α,A : type t = α
ω

⊢A type t = A.t : type t = α
ω

⊢ Γ, (A : type t = A.t) : Γω, α,A : type t = α

In the environment Γω, α,A : type t = α, the declaration type t = A.t is wellformed and elab-
orates to type t = α. Generalized to any declaration, we get the following rule:

M-Typ-E-Decl
ω

⊢ Γ : Γω Γ, α,A : D
ω

⊢A D :D
ω

⊢ (Γ, A : D) : (Γω, α,A : D)

This is not an algorithmic rule, as it requires to guess the Mω-declaration D and the set
of abstract types α. However, during soundness proof, it is easy to guess them, as the
context Γ, A : D is the result of a context extension Γ ⊎ A : D0. Elaborating D0 gives us α
and D. We have the following derived rule:

ω

⊢ Γ : Γω Γω
ω

⊢A D0 : λα.D
ω

⊢ (Γ ⊎A : D0) : (Γ
ω, α,A : D)

The other rules follow the same intuition:

M-Typ-E-Nil
ω

⊢ ∅ : ∅

M-Typ-E-Param
ω

⊢ Γ : Γω Γω, α, Y : C
ω

⊢ S : C
ω

⊢ (Γ, Y : S) : (Γω, α, Y : C)

M-Typ-E-Zip
ω

⊢ Γ : Γω Γω, α, γω
ω

⊢ γ : γω

ω

⊢ (Γ, γ) : (Γω, α, γω)

Strengthening

Lemma 10 (Elaboration of strengthening). Given a path P and a signature S, such that

Γω
ω

⊢ P : C′ (1) and Γω
ω

⊢ S : λα.C (2) and Γω
ω

⊢ C′ < C[α 7→ τ] (3), we have

Γω
ω

⊢ S // P : (λα.C) τ (4)

5.5. PROPERTIES 145

Proof. We proceed by induction on S. We have four cases, depending on the head constructor.

• (= P ′ < S′) We have (= P ′ < S′) //P = (= P ′ < S′). We know that (2) must have been
obtained by M-Typ-Sig-Trans, and therefore the set of α must be empty (a transparent
signature does not bind new abstract types). That is, (2) is:

Γω
ω

⊢ (= P ′ < S′) : C

We conclude by type equivalence (which includes β-reduction): (λ∅.C)∅ ≡ C

• The zipper cases are easy by induction.

• in the other cases of non-zipped signatures, we have S // P = (= P < S). To show (4),
we use M-Typ-Sig-Trans:

M-Typ-Sig-Trans

Γ
ω

⊢ P : C′ Γ
ω

⊢ S : λα.C Γ
ω

⊢ C′ < C[α 7→ τ]

Γ
ω

⊢ (= P < S) : C[α 7→ τ]

The result of the rule is indeed the same as (4) by type equivalence, while the premises
are exactly (1), (2), (3).

Elaboration of judgments

As path typing, subtyping, and normalization are mutually recursive, we state four combined
properties that are proven by mutual induction. Type and module-type definitions are kept
as such and only inlined on demand in ZipML, while they are immediately inlined in Mω.
Therefore, ZipML normalization becomes the identity in Mω.

Lemma 11 (Elaboration of normalization). If S normalizes to S′, i.e., Γ ⊢ S ↓ S′, and if we

have
ω

⊢ Γ : Γω , then both signatures have the same elaboration in Mω. Namely:

Γω
ω

⊢ S : λα.C =⇒ Γω
ω

⊢ S′ : λα.C

Lemma 12 (Elaboration of path-typing). If Γ ⊢ P : S and
ω

⊢ Γ : Γω , we have:

Γω
ω

⊢ P : (τ, C) ∧ Γω
ω

⊢ S : (τ, C)

Lemma 13 (Elaboration of path resolution). Assuming
ω

⊢ Γ : Γω , we have both

• If Γ ⊢ P ▷ S then S has the same signature as P but with a fresh identity:

Γω
ω

⊢ P : (τ, C) ∧ Γω
ω

⊢ S : λα.(α, C)

• If Γ ⊢ P ▷ P ′ then P and P ′ have the same identity tag, and P ′ has a better signature:

Γω
ω

⊢ P : (τ, C) ∧ Γω
ω

⊢ P ′ : (τ, C′) ∧ Γω
ω

⊢ C′ < C

Lemma 14 (Elaboration of subtyping). The elaboration preserves subtyping relationship: If

Γω
ω

⊢ S : λα.C and Γω
ω

⊢ S′ : λα′.C′ then Γ ⊢ S ≤ S′ implies Γω
ω

⊢ λα.C < λα′.C′ . This does
not contain zipper simplification.

Proof. The proof goes by induction on the derivations of normalization, path-typing and
subtyping (as they are mutually recursive). We show some of the interesting rules here:

146 CHAPTER 5. ZIPML

Normalization – Γ ⊢ S ↓ S′ ∧
ω

⊢ Γ : Γω ∧ Γω
ω

⊢ S : λα.C =⇒ Γω
ω

⊢ S′ : λα.C

• Norm-S-Zip – Immediate by induction hypothesis

• Norm-S-Trans-Some – We have:
Norm-S-Trans-Some

Γ ⊢ S ↓ (= P ′ < S′)(1)

Γ ⊢ (= P < S) ↓ (= P ′ < S′)

By hypothesis, we also have Γω
ω

⊢ (= P < S) : (τ, C) (2) By inversion, we have:

Γω
ω

⊢ P : (τ0, C0) Γω
ω

⊢ S : λα.(τ1, C1) (3) Γω
ω

⊢ (τ0, C0) < (τ, C) (4)

Where (τ1, C1)[τ 7→ α] = (τ, C). Using the induction hypothesis with (1) and (3), we

get Γω
ω

⊢ (= P ′ < S′) : λα.(τ1, C1) . However, typing a transparent signature does not
introduce type variables. Therefore, by inversion, the set of parameters α must be
empty, which removes the substitution, and we have:

(τ1, C1)[τ 7→ α] = (τ1, C1) = (τ, C)

This implies Γω
ω

⊢ (= P ′ < S′) : (τ, C) , which finishes this case.

• Norm-S-Trans-None – We have:
Norm-S-Trans-None
Γ ⊢ P ▷ P ′(1) Γ ⊢ S ↓ S′(2)
Γ ⊢ (= P < S) ↓ (= P ′ < S′)

By hypothesis, we also have Γω
ω

⊢ (= P < S) : (τ, C) (3). By inversion, we have:

Γω
ω

⊢ P : (τ0, C0) (4) Γω
ω

⊢ S : λα.(τ1, C1) (5) Γω
ω

⊢ (τ0, C0) < (τ, C) (6)

Where (τ1, C1)[τ 7→ α] = (τ, C). Using the induction hypothesis with (2) and (5), we get

Γω
ω

⊢ S′ : λα.(τ1, C1) . By the resolution lemma (Lemma 13), we have:

Γω
ω

⊢ P ′ : (τ0, C′0) Γω
ω

⊢ C′0 < C0

We apply the rule M-Typ-Sig-Trans:

M-Typ-Sig-Trans

Γ
ω

⊢ P ′ : (τ0, C′0) Γ
ω

⊢ S : λα.(τ1, C1) Γ
ω

⊢ (τ0, C′0) < (τ, C) (7)

Γ
ω

⊢ (= P ′ < S′) : (τ, C)

The only remaining premise is (7), which is a consequence of transitivity of subtyping.

• Norm-S-LocalModType – Sketch: Direct property of the environment

• Norm-S-PathModType – Sketch: By inversion of Γω
ω

⊢ P.T : λα.C (the hypothesis),
we get

Γω
ω

⊢ P : (_ , sig D end) module type T = λα.C ∈ D

Besides, we have Γ ⊢ P ▷ sigA D end and module type T = S ∈ D. We conclude by
elaboration of path typing.

5.5. PROPERTIES 147

Path-Typing – Γ ⊢ P : S ∧
ω

⊢ Γ : Γω ∧ Γω
ω

⊢ P : (τ, C) =⇒ Γω
ω

⊢ S : (τ, C)

• Typ-P-Arg and Typ-P-Module – Sketch: Direct property of the environment

• Typ-P-Norm – immediate application of the normalization lemma (Lemma 11)

• Typ-P-Proj – Sketch: Direct application of the projection rule in Mω

Subtyping – Γ ⊢ S ≤ S′ ∧ Γω
ω

⊢ S : λα.C ∧ Γω
ω

⊢ S′ : λα′.C′ =⇒ Γω
ω

⊢ λα.C < λα′.C′

• Sub-S-Norm – Sketch: Direct consequence of the normalization lemma Lemma 11.

• Sub-S-Zipper, Sub-S-FctG and Sub-S-Sig – Sketch: Direct consequence of the cor-
responding rule in Mω.

• Sub-S-FctA – Sketch: Almost a direct consequence of the corresponding rule in Mω,
just needing to show the elaboration of the extended environment

ω

⊢ Γ ⊎ Y : Sa : Γω, α, Y : Sa

Soundness

Before finally reaching the soundness result, we have a lemma for signature typing:

Lemma 15 (Elaboration of signature typing). The elaboration of signatures of ZipML implies
the elaboration of signatures of Mω. Given S, Γ and Γω such that Γ ⊢ S, then

ω

⊢ Γ : Γω =⇒ ∃α, C. Γ
ω

⊢ S : λα.C

Proof. The proof goes by induction on the typing derivation:

• Typ-S-ModType – Sketch: Property of the elaboration of environments

• Typ-S-Str, Typ-S-GenFct, Typ-S-AppFct – Sketch: Immediate by induction, using
the corresponding Mω rule.

• Typ-S-Ascr – Sketch: Direct use of path typing lemma and subtyping lemma.

The rules for declarations are immediate.

Theorem 16: Soundness

Typing of a module expression in ZipML implies typing of the same expression in Mω:

⊢ M : S =⇒ ∃α, C.
ω

⊢ M : λα.C (5.2)

Proof. We prove

Γ ⊢♢ M : S

ω

⊢ Γ : Γω

 =⇒ ∃α, C.

Γω

ω

⊢ S : λα.C

Γω
ω

⊢ M : ∃♢α.C
can be zip-erased

by induction on the derivations of the hypothesis.

148 CHAPTER 5. ZIPML

• Typ-M-Norm – We have:
Typ-M-Norm
Γ ⊢♢ M : S(1) Γ ⊢ S ↓ S′(2)

Γ ⊢♢ M : S′

As (1) uses the same typing environment as the conclusion, we can use the induction
hypothesis directly, and we get α, C such that

Γω
ω

⊢ S : λα.C (3) Γω
ω

⊢ M : ∃♢α.C (4)

Applying the elaboration of normalization (Lemma 11) with (2) and (3), we get that the

elaboration of S′ is the same: Γω
ω

⊢ S′ : λα.C . We already have Γω
ω

⊢ M : ∃♢α.C by (4),
which can be zip-erased by hypothesis.

• Typ-M-Ascr – We have:
Typ-M-Ascr
Γ ⊢ S̃ (1) Γ ⊢ P̃ : S (2) Γ ⊢ S ⩽ S̃ (3)

Γ ⊢♢ (P̃ : S̃) : S̃

We need to find α and C1 such that:

Γω
ω

⊢ S̃ : λα.(τ1, C1) (4) Γω
ω

⊢ (= P̃ < S̃) : (τ1, C1) (5)

By applying elaboration of signature typing Lemma 15 on (1), elaboration of path-typing
Lemma 12 on (2) we get:

Γω
ω

⊢ S̃ : λα.(τ1, C1) (6) Γω
ω

⊢ P̃ : (τ, C) (7) Γω
ω

⊢ S : (τ, C)

(6) gives us the first goal (4). We apply the elaboration of subtyping Lemma 14 and

get Γω
ω

⊢ (τ, C) < λα.(τ1, C1) , which, by inversion, gives us a list of type expressions τ
such that:

Γω
ω

⊢ (τ, C) < (τ1, C1)[α 7→ τ] (8)

We use M-Typ-Mod-Ascr to show (5) (the hypothesis being exactly (7), (6) and (8):

M-Typ-Mod-Ascr

Γ
ω

⊢ P : (τ, C) Γ
ω

⊢ S̃ : λα.(τ1, C1) Γ
ω

⊢ (τ, C) < (τ1, C1)[α 7→ τ]

Γ
ω

⊢ (P : S̃) : ∃▽α.(τ1, C1)

• Typ-M-Path Sketch: Just a use of the path typing lemma Lemma 12

• Typ-M-FctG, Typ-M-AppG, Typ-M-Str, Typ-M-Mode: Immediate by induction hy-
pothesis, as there is a directly corresponding Mω rule.

• Typ-M-FctA Sketch: We have:
Typ-M-FctA
Γ ⊢ Sa (1) Γ ⊎ Y : Sa ⊢▽ M : S (2)

Γ ⊢♢ (Y : Sa)→ M : (Y : S′a)→ S

Induction hypothesis directly on (1) which gives: Γω
ω

⊢ Sa : λα.Ca (3). Before using the
induction hypothesis on (2), we need to show

ω

⊢ (Γ ⊎ Y : Sa) : (Γ
ω, α, Y : Ca)

5.5. PROPERTIES 149

which is easy by environment elaboration and using (3). We get:

Γω, α, Y : Ca
ω

⊢ M : ∃▽β.C (4) Γω, α, Y : Ca
ω

⊢ S : λβ.C (5)

Let us set C′ ≜ C
[
β 7→ β′(α)

]
We need to show:

Γω
ω

⊢ (Y : Sa)→ M : ∃▽β′.β′(α)∀α.Ca → C′ (6) Γω
ω

⊢ (Y : Sa)→ S : λβ′.∀α.Ca → C′ (7)

For (6), we use M-Typ-Mod-AppFct, which hypothesis are exactly (3) and (5). For
(7), we use M-Typ-Sig-AppFct, which hypothesis are exactly (3) and (5).

5.5.2 Zipper renaming, introduction, and extrusion

These operations are not directly available in ZipML. Yet, we could add them as additional
typing rules.

Renaming of zipper labels

When a zipper is introduced during projection, it turns a self-reference into a label whose
name is chosen arbitrarily and cannot later be changed. Hence, it must be chosen fresh so
as to avoid shadowing of other labels of the same name, which well-formedness forbids. Still,
labels can be renamed consistently. For example, if Γ ⊢ M : ⟨A : D⟩ S and A does not appear
free in Γ, then we also have

Γ ⊢ M : ⟨A′ : D[A 7→ A′]⟩ S[A 7→ A′]

when A′ is chosen fresh for Γ, D, and S. This is a lemma and not a derivable typing rule.
However, we can then safely add renaming as an admissible typing rule.

A logically cleaner solution, worth considering in the future, would be to introduce a binder
construct νA. S in signatures that limits the scope of A to S. However, this would be more
involved and invasive as 1. typing rules should then be adjusted to extrude binders and gather
them at to the toplevel of typing judgments and in the codomains of generative functors, and
2. equivalence (an other judgments) should also be redefined up to the consistent renaming
of binders.

Introduction of zippers
Typ-M-ZipperI
Γ ⊢ M : S Γ ⊢

〈
A : ∅ | D

〉
S : wf

Γ ⊢ M :
〈
A : ∅ | D

〉
S

In ZipML, zippers are only introduced during projections and indirectly transported by
other operations. They can be simplified at toplevel. Yet, they cannot be moved, in particular,
they cannot be extruded. In ZipMLF , we may allow the introduction of a right-zipper as a
toplevel typing rule. The combination of both premises ensure that the zipper label does not
appear in Γ nor anywhere in S. This is always safe, as the extra fields D, are not currently
accessible from S and, intuitively, will not be accessible by the rest of the program.

Interesting, the rule may then be followed by an equivalence that moves the right floating
fields on the left and do some “rewiring” in S, accordingly. For example, we could turn a
module of signature sigA D end into one of type

〈
A : D

〉
sig D // A end by first introducing〈

A : ∅ | D
〉
S, then using equivalence and simplification. This could also be used for zipper

extrusion.
For example, if Γ ⊢ M : S0 where S0 is sigA module X : ⟨A0 : D⟩ S end and A does not

appear in D, then we could extrude A0 : D by giving M the successive types:

150 CHAPTER 5. ZIPML

• S0 ≜ sigA module X : ⟨A0 : D⟩ S end initially

• ⟨A1 : ∅ | D // A1.Z.X.A0⟩ sigA module X : ⟨A0 : D⟩ S end by introduction of a zipper

• ⟨A1 : D⟩ sigA module X : ⟨A0 : D // A1⟩ S end by equivalence

• ⟨A1 : D⟩ sigA module X : ⟨A0 : D // A1⟩ S [A.X.A0 ← A1] end by equivalence

• ⟨A1 : D⟩ sig module X : ⟨A0 : ∅ | D // A1⟩ S [A.X.A0 ← A1] end by equivalence

• ⟨A1 : D⟩ sig module X : S [A.X.A0 ← A1] end by projection

• S1 ≜ ⟨A0 : D⟩ sig module X : S [A.X.A0 ← A0] end by renaming of A1.

5.5.3 Completeness of ZipML with respect to Mω

Conversely, one may wonder whether the type system of ZipML is powerful enough to encom-
pass Mω. We argue that it is indeed the case. In this section we present some key properties
supporting this claim. Namely, we remark that:

1. floating fields can be used to encode existentially quantified variables

2. narrow subtyping on zippers can simulate the Mω extrusion and skolemization of vari-
ables

3. we do not need to encode universally and lambda bound variables

Encoding existentially quantified types with floating fields

Our claim is that floating fields can encode all existentially quantified variables of Mω. We
first consider first-order type variables, then module identities, and finally higher-order types.

First-order type variables Let us consider a Mω-signature with a single quantified type
variable of the base kind ⋆, which is of the form ∃α.C. Inside C, the variable α is accessible
everywhere. This is quite similar to a zipper signature ⟨A : type t = A.t⟩ S, where A.t is
a type accessible everywhere inside S. Therefore, we could translate the Mω-signature into
a zipper signature by introducing a floating field with a fresh name for every quantified
variable. We may define a reverse elaboration judgment Γω ⊢ ∃α.C ←↩ ⟨γ⟩ S, where we extend
the environment to attach the name of a floating field to every (existentially) quantified
abstract type. We would have rules of the form:

Rev-S-Star
Γ, α←↩ A.t ⊢ C ←↩ S A fresh

Γ ⊢ ∃α.C ←↩ ⟨A : type t = A.t⟩ S

Rev-T-AbsType
α←↩ A.t ∈ Γω

Γ ⊢ α←↩ A.t

Module identities Modules identities of Mω can be encoded as floating module fields.
However, there is a difficulty: what is the attached signature of an identity floating field?
The simplest answer is to extend ZipML with a bottom signature ⊥ that is a subtype of all
signatures. Doing so, we would get rules of the following form:

Rev-S-Mod
Γ, αid ←↩ A.X ⊢ C ←↩ S A fresh

Γ ⊢ ∃αid.C ←↩ ⟨A : module X : ⊥⟩ S

Rev-S-Transparent
αid ←↩ A.X ∈ Γω Γ ⊢ C ←↩ S
Γ ⊢ (αid, C)←↩ (= A.X < S)

However, as hinted in Section 4.2.3, module identities of Mω are always attached to signatures
that have a common ancestor in the subtyping order. Therefore, rather than extending ZipML
with a bottom signature ⊥, we could (lightly) instrument the typing rules of Mω to obtain the
common ancestor signature associated with each module identity and use it in the floating
field that encodes this identity.

5.5. PROPERTIES 151

Higher-order types Higher-order types of Mω can be encoded as floating functors produc-
ing a single type field. Again, there is a subtlety: what is the signature of the domain of such
functor? The simplest answer is to extend ZipML with a top signature ⊤ that is a supertype
of all signatures. Using it, we would get rules of the form:

Rev-S-HigherOrder
Γ, φ←↩ A.F (·).t ⊢ C ←↩ S

Γ ⊢ ∃▼φ .C ←↩ ⟨A : module F : (Y : ⊤)→ sigB type t = B.t end⟩ S

Rev-T-Transparent
φ←↩ A.F (·).t ∈ Γω αid ←↩ B.X

Γ ⊢ φ(αid)←↩ A.F (B.X).t

Higher-order module identities would work similarly. Following the same reasoning as for
module identities, we conjecture that, rather than extending ZipML with a top signature ⊤,
we could instrument the typing rules of Mω to obtain the domain of the functor that originally
introduced φ, which is a supertype of all use-cases.

Universally and lambda quantified types Our argument applies to existentially quanti-
fied types. But the universal quantification and lambda quantification of Mω are always used
for signatures that come from elaboration of the source, and can therefore also be represented
in ZipML, without using floating field to encode type variables.

Extrusion

Floating fields can be extruded, similarly to existential types. For instance, if floating fields
have been introduced in front of submodules, we could extrude them:

if M : sigA moduleX1 : ⟨A1 : type t = A1.t⟩ sig type t = A1.t end

moduleX2 : ⟨A2 : type t = A2.t⟩ sig type t = A2.t end end[A]
then M : ⟨A1 : type t = A1.t ;A2 : type t = A2.t⟩

sigA moduleX1 : sig type t = A1.t end moduleX2 : sig type t = A2.t end end[A]

This also applies to skolemization, as we could also have:

if M : (Y : Sa)→ ⟨B : type t = B.t⟩ sig type t = B.t end
then M : ⟨B : module F : (Y0 : Sa)→ sigD type t = D.t end⟩ (Y : Sa)→ sig type t = B.F (Y).t end

where we would first introduce the outer zipper as a right floating field, apply an equivalence,
and remove the inner zipper by projection. (Here, for the domain of the floating functor, we
could also use the top signature ⊤ instead of the signature Sa of the functor we extruded
from, as we did.)

Overall, equivalence over floating fields allows us to mimic the extrusion and skolemization
mechanisms of Mω. Informally, during a proof a completeness, it would allow us to maintain
a compositional correspondence between Mω and ZipML every time there is extrusion or
skolemization happening. At each step, we would be able to combine the ZipML signatures
obtained by induction hypothesis and use equivalence to make them correspond to Mω.

Comparing reverse translation and anchoring Technically, the reverse translation
drafted here could be composed with zipper simplification. We conjecture that it would
produce the same result as using Mω-anchoring when it succeeds, up to normalization.

152 CHAPTER 5. ZIPML

5.5.4 Other properties

Normalization is a floating typing rule that can be called anytime. Normalization itself may
be performed by need, but also in a strict manner. It is therefore left to the implementation
to normalize just as necessary – as one would typically do with β-reduction.

As a result, the inferred signature is not unique, returning different syntactic answers
according to the amount of normalization that has been done. Hence, we may have Γ ⊢ M : S
and Γ ⊢ M : S′ when S and S′ syntactically differ – even a lot! as one may contain a signature
definition expanded in the other.

Still, we should then have Γ ⊢ S′ ≈ S′′. That is, the inferred signatures should only differ
up to their presentation, but remain inter-convertible – and otherwise simplified in the same
manner.

One might expect a stronger result, stating that there is a best presentation where module
names would have been expanded as little as possible. This would be worth formalizing,
although a bit delicate. In particular, we probably wish to keep names introduced by the
user, but not let the algorithm reintroduce a name when it recognized an inferred signature
that was not named, but just happens to be equivalent to one with a name.

5.6 Discussion

Zipper renaming

When a zipper is introduced during projection, it turns a self-reference into a label whose
name is chosen arbitrarily and cannot later be changed. Hence, it must be chosen fresh so
as to avoid shadowing of other labels of the same name, which well-formedness forbids. Still,
labels can be renamed consistently. For example, if Γ ⊢ M : ⟨A : D⟩ S and A does not appear
free in Γ, then we also have

Γ ⊢ M : ⟨A′ : D[A 7→ A′]⟩ S[A 7→ A′]

when A′ is chosen fresh for Γ, D, and S. This is a lemma and not a derivable typing rule.
However, we can then safely add renaming as an admissible typing rule.

Renaming could be internalized in two ways. A light solution is to add an explicit code-free
construct 11 [A← A′] M with the obvious typing rule:

Renaming
Γ ⊢ M : ⟨A : D⟩ S A′ /∈ Γ, D, S

Γ ⊢ M [A← A′] : ⟨A′ : D[A 7→ A′]⟩ S[A 7→ A′]

Renaming could break further typing, and it would be the user’s responsibility to use renam-
ing appropriately, but it would preserve soundness, thanks to the meta-theoretical renaming
property.

A logically cleaner solution, worth considering in the future, would be to introduce a binder
construct νA. S in signatures that limits the scope of A to S. However, this would be more
involved and invasive as 1. typing rules should then be adjusted to extrude binders and gather
them at to the toplevel of typing judgments and in the codomains of generative functors, and
2. equivalence (an other judgments) should also be redefined up to the consistent renaming
of binders.

Full zippers

As full zippers play an important role in the proof of preservation of typing in Section 5.4.8,
one can wonder if it would be relevant to work in ZipMLF directly, instead of ZipML. So far,

11That is, [A← A′] M behaves as M at runtime.

5.6. DISCUSSION 153

we consider that ZipMLF is a useful tool for the proof, as the reorganization of zippers can
be seen as an equivalence. It would be worth exploring if seeing ZipML as the projection of
ZipMLF would have other benefits.

Chapter 6

Advanced features

In this chapter, we step back from Mω and ZipML to discuss other features of ML modules
that were not formally treated in this work. This chapter can be seen as the continuation of
Chapter 2, and we reuse the feature markers (C , F , P , , , +).

Overview In Section 6.1, we discuss the composition between modules, i.e., the way mod-
ules can be combined. After presenting hierarchical and flat composition, we briefly discuss
recursive modules and open recursion, both from a typing and semantic point of view.

In Section 6.2, we present other advanced features, starting with those enabling a better
interaction between the module language and the core language, namely first-class modules
and modular explicits, modular implicits. Then, we move on to the features for signature
manipulation and miscellaneous ones.

155

156 CHAPTER 6. ADVANCED FEATURES

6.1 Composition

Composition refers to the ways different modules can be combined. In this section we propose
a taxonomy to classify the forms of composition and briefly discuss the associated features.

Forms of composition Let us assume that we want to compose two modules, M1 and M2.
We propose the following criteria:

1. Delayed vs Immediate: If we know the modules that are composed, here M1 and M2,
the composition is immediate. If instead, we want to compose M2 with a module that is
not chosen yet, we call the composition delayed. In delayed composition, the user must
provide the signature of what is expected of the other module. Delayed composition is
associated with a resolution where the module M1 is actually chosen1. This resolution
can be made at another point than the definition of M2, and it allows M1 and M2 to be
compiled separately. It also makes it possible to create several instances by composing
M2 with different modules. Overall, delayed composition has some flexibility but requires
a signature annotation, and therefore, forces a fixed view of the other module.

2. Sequential vs Recursive: If M2 depends (either for value definitions or type defini-
tions) on M1 but not the other way around, we can compose them in a sequence: first M1
then M2. If the dependency is mutual, i.e., M1 depends on M2 and M2 depends on M1, we
need a recursive composition. Expressivity-wise, sequential composition is a sub-case
of recursive composition, which is more general. However, with recursive composition
comes the problem of well-foundation: how can we ensure that both type definitions and
value definitions are not cyclic (in a ill-formed way)? We explore this challenge (and
other practical ones) in Section 6.1.2. Overall, this added complexity explains why the
simplicity of sequential composition is still appealing for users and language designers.

3. Hierarchical vs Flat: When M1 and M2 are structures (not functors), another distinc-
tion arises. After the composition of M1 and M2, if the content of both are in separate
namespaces, the composition is called hierarchical : the namespace hierarchy keeps a
trace of the composition. If instead, the contents of the two modules are merged in the
same namespace, the composition is called flat. Flat composition can create clashes of
namespaces, i.e., shadowing. Overall, flat composition is more general than hierarchical,
as the desired name-space hierarchy can always be explicitly added before composition,
but at the cost of dealing with shadowing. We discuss flat composition in more details
in Section 6.1.1.

We sum up the associated features in Figure 33.

6.1.1 Hierarchical and flat composition

Hierarchical

The easiest form of composition is closed-sequential-hierarchical composition, which is pro-
vided by module bindings. The user can combine modules, but they remain in different
name-spaces, with different prefixes, as illustrated by the following code:

1 module X1 = struct let x = 42 end
2 module X2 = struct let x = 43 end
3 module Z = struct module X = X1 module X’ = X2 end

1At this point, a subtyping check is made between what was expected of M1 and what is actually provided.
M1 is then seen through either an opaque or transparent ascription, depending on the features. For functor
calls, the effective ascription is transparent.

6.1. COMPOSITION 157

Sequential
Recursive

Hierarchical Flat
Immediate submodule include/open recursive modules

Delayed
creation functor

mixin modulesb
resolution application include functora

Figure 33: Summary of the language constructions for composition.
aExperimental feature implemented in an extension of OCaml
bImplemented in MixML [Rossberg and Dreyer, 2013], an experimental language based on mixin
composition

1 module X1 = struct let x = 42 end
2 module X2 = struct let x = 43 end
3 module Z : sig
4 module X : sig val x : int end
5 module X’ : sig val x : int end
6 end

The module Z is the result of the composition of X1 and X2. The content of X1 are in a
hierarchically different namespace from the content of X2, with a different prefix: X1.x vs X2.x.

Open-hierarchical-composition is provided by functors. The creation is definition of the
functor, that depends on a yet-unresolved module parameter. At the point of functor appli-
cation, the module is resolved, as illustrated by the following code:

1 (* Creation *)
2 module F (Y : sig val x : int end) = struct let z = Y.x + 42 end
3 module X = struct let x = 1 end
4 module X’ = struct let x = 2 let y = 3 end
5 (* Resolution *)
6 module Z = F(X)
7 module Z’ = F(X’)
1 module F : functor (Y : sig val x : int end) → sig val z : int end
2 module X : sig val x : int end
3 module X’ : sig val x : int val y : int end
4

5 module Z : sig val z : int end
6 module Z’ : sig val z : int end

The creation of F, X and X’ can be in different files and in any order. The functor can be
used several times, creating different instances Z and Z’. Inside the body of the functor, the
content of the parameter is hierarchically separated (prefixed by Y). It is not re-exported by
default.

Flat composition

There are two main language constructs for closed-flat-composition, that we detail below.

Include The first construct is include. It takes all the fields of a structure and put them,
at the same level, inside the current structure. It can be used for modules expressions:

1 module X1 = struct let x1 = 42 end
2 module X2 = struct let x2 = 43 end
3 module Z = struct include X1 include X2 let z = x1 + x2 end
1 module X1 = sig val x1 : int end
2 module X2 = sig val x2 : int end
3 module Z : sig val x1 : int val x2 : int val x : int end

158 CHAPTER 6. ADVANCED FEATURES

It can be used with anonymous modules, as long as they have a structural signature. It is also
available for combining signatures. As flat composition merges two name-spaces, there can
be shadowing between the two. In OCaml, shadowing via an include statement is disallowed
and produces a typechecking error. A typical use-case for include is to extend a module with
additional fields.

Open The second construct for flat composition is a variant of the include statement where
the imported bindings are made available in the current structure but not re-exported: open.

1 module X = struct let x = 42 end
2 module Y = struct open X let y = x + 1 end
1 module X : sig val x : int end
2 module Y : sig val y : int end (* no field x *)

While the restricted open P statement (restricted to paths) is straightforward, the generalized
statement open M [Li and Yallop, 2017] (where M is any module expression) is more subtle:
it may create signature avoidance situations by opening abstract type declarations that are
not exported and yet appear in the signature.. For instance, the following program fails to
typecheck:

1 module X = struct
2 open (struct type t = A | B end)
3 let x : t = A
4 end
1 Error: The type t/1676 introduced by this open appears in the signature
2 Line 3, characters 6-7:
3 The value x has no valid type if t/1676 is hidden

As for include, opening a module can lead to shadowing of fields. While it is again disallowed
by default in OCaml, the language also offers a variant open! that allows shadowing.

Open-flat composition

There is a missing construct for open-flat composition. The closest we can do in OCaml
would be to combine a functor with an include statement, as in:

1 module type S = sig val x : int end
2 module F = functor (Y:S) → struct include Y let f = x + x end
3 module X = struct let x = 42 let y = 41 end
4 module Z = F(X)
1 module Z : sig val x : int (* from X *) val f : int (* from F *) end

Technically, it is an open flat composition, as the content of X and F are indeed merged in the
same namespace at the resolution point. However, this is not satisfactory, as X is restricted to
the fixed view S: F can be used only to extend it beyond the field of S, other extra-fields are
lost (here, the field y of X is not present in Z). Due to considerations of compilation-schemes
(discussed in Section 2.2.4), this implicit (transparent) ascription at functor call could not
be removed. Alternatively, we can use a temporary structure and flat-compose the argument
together with the result of functor application, as in:

1 module Z = struct
2 open (struct module Temp = struct let x = 42 let y = 41 end end)
3 include Temp
4 include F(Temp)
5 end
1 module Z : sig val x : int val y : int (* from Temp *) val f : int (* from F *) end

6.1. COMPOSITION 159

Again, this pattern is not fully satisfactory, as it (1) requires to use a dummy name Temp and
(2) does not compose well: every include of a functor call would require a new temporary
structure, with the verbose pattern of line 3.

Include functor A proposal2 has been made for OCaml (and is already implemented
in JaneStreet’s fork of OCaml) for a new feature called include functor, aimed at solving
this problem. It provides a way to do the resolution of open-flat composition, combining a
structure and the result of a functor call:

1 module Z = struct
2 let x = 42
3 let y = 41
4 include functor F (* = include F(current structure up to this point) *)
5 end
1 module Z : sig val x : int val y : int val f : int end

Using the combined keywords include functor it allows to flat-compose the result of applying F
to the current structure being built.

6.1.2 Recursive composition

Sequential composition does not allow the user to define modules that have mutual depen-
dencies. This is a strong limitation of modularity: while the core-language provides mutually
recursive types and values, their definitions cannot cross module boundaries. As stated by
Russo [2001]: “This limitation compromises modular programming, forcing the programmer
to merge conceptually (i.e. architecturally) distinct modules.” To overcome this limitation,
several proposal were made, most notably recursive modules (for immediate composition) and
mixin modules (for delayed composition) Despite a strong academic interest [Rossberg and
Dreyer, 2013; Im et al., 2011; Montagu and Rémy, 2009; Dreyer, 2007a,b; Nakata and Gar-
rigue, 2006; Russo, 2001; Crary et al., 1999; Jaakkola, 2020; Montagu and Rémy, 2009] (to
name a few), recursive modules were implemented only in OCaml Leroy [2003] and Moscow
ML [Russo, 2001], while mixins were implemented in MixML [Rossberg and Dreyer, 2013].
As is was not at the heart of this thesis, we only briefly present existing features, challenges,
or research ideas for future work. We start with an example.

Recursive modules in OCaml OCaml offers a notion of recursive module binding, intro-
duced by the keywords module rec. Each recursive module must be given an explicit signature.
The pattern is given on the left-hand side, with the result of the typechecking, a recursive
module declaration, being written on the right-hand side:

1 module rec X1 : S1 = M1
2 and X2 : S2 = M2
3 ...
4 and Xn : Sn = Mn

1 module rec X1 : S1
2 and X2 : S2
3 ...
4 and Xn : Sn

A typical use-case for recursive modules is when a type definition relies on another type defi-
nition that is provided by a functor call on the current structure. An example, adapted from
[Nakata and Garrigue, 2006], is the following:

1 module rec Tree :
2 sig type t = L | N of TreeSet.t val compare : t → t → int end =
3 struct
4 (* Leafs or sets of sub-trees *)
5 type t = L | N of TreeSet.t
6 let compare (t1: t) (t2 : t) = match (t1, t2) with

2See RFC at https://github.com/ccasin/RFCs/blob/include-functor/rfcs/include_functor.md

https://github.com/ccasin/RFCs/blob/include-functor/rfcs/include_functor.md

160 CHAPTER 6. ADVANCED FEATURES

7 | (Leaf, Leaf) → 0
8 | (Node(_), Leaf) → 1
9 | (Leaf, Node(_)) → -1

10 | (Node(s1), Node(s2)) → TreeSet.compare s1 s2
11 end
12 and TreeSet : (Set.S with type elt = Tree.t) = Set.Make(Tree)
1 module rec Tree : sig type t = L | N of TreeSet.t val compare : t → t → int end
2 and TreeSet : sig type t type elt = Tree.t val compare : t → t → int ... end

Here, the definition of Tree.t at line (3) relies on sets of itself at each node TreeSet.t, where
sets are provided by the Set functor. Both the type definitions and value bindings are mutually
recursive between Tree and TreeSet.

Challenges of recursive composition We identify four main challenges that are inherent
to recursive composition and that we detail in the rest of this section.

Double-Vision

An issue that appears with the interaction of type abstraction and recursive definitions
([Dreyer, 2007a,b; Crary et al., 1999; Rossberg and Dreyer, 2013]) is the double vision problem.
Let us see a example in OCaml:

1 module rec X : sig type t val x : t end
2 = struct type t = int let x = (Y.f 0) + 1 end
3 and Y : sig val f : X.t → X.t end
4 = struct let f x = x end
1 Error: This expression has type t but an expression was expected of type X.t

The outside vision of t is abstract, while the vision inside the structure is type t = int. As
OCaml does not have double vision, it does not identify X.t and t and fails to typecheck.
The problem has been solved by Dreyer [2007b] (and later extended to crossed-eyes double
vision [Rossberg and Dreyer, 2013]), via a two-pass algorithm that introduces abstract type
variables and refined them to their definition only inside the structure that defines them.

Cyclic type definitions

As type definitions inside recursive modules can be mutually recursive, it is possible to define
type cycles. This example produces a stack overflow in current OCaml:

1 module rec X : sig type t = Y.t end = struct type t = int end
2 and Y : sig type t = X.t end = struct type t = int end

Different meta-theories (mainly equi-recursive or iso-recursive types), allow to handle different
forms of types cycles.

Recursive signature wellformedness

Even in the absence of type cycles, checking mutually recursive definitions is non trivial. Let
us assume that we want to check S1 and S2 that are mutually recursive. Checking S1 requires
information from S2, but we cannot trust S2 yet and put it in the typing environment. And vice
versa for checking S2. In the absence of applicative functors, a trick can be used: signatures
can be first simplified by making all type fields abstract. These approximate signatures S1’
and S2’ can be easily checked for wellformedness and put in the typing environment. With
applicative functors however, there is a need for a more involved solution. In OCaml, this
code fails to typecheck:

6.2. OTHER FEATURES 161

1 module rec X : sig type t = int end = struct type t = int end
2 and Y : sig type u = F(X).t end = struct type u = F(X).t end;;

Safe initialization of recursive structures

A module under initialization does not fulfill its signature specification yet and can be unsafe
to use, as it may have uninitialized fields. Yet, during initialization of mutually recursive
modules, accesses to other modules under initialization can be made. Ensuring that such
accesses are well-ordered and well-founded is a known challenge, both in the ML community
([Hirschowitz and Leroy, 2005; Reynaud et al., 2021]), Haskell and in the Object Oriented
Programming community ([Boudol, 2004; Liu et al., 2021, 2020; Qi and Myers, 2009; Blaudeau
and Liu, 2022; Syme, 2006; Liu, 2020; Summers and Mueller, 2011; Liu et al., 2023]). In ML
modules, most systems have a back-patched semantics: fields are first filled with a dummy value
that is then patched to the right one when it is actually computed. In OCaml, functions are
first initialized with dummy function that throws an exception Undefined_recursive_module.
This exception can be raised during evaluation:

1 module rec X : sig val x : unit → int end =
2 struct let x () = Y.y + 1 end
3 and Y : sig val y : int end =
4 struct let y = X.x () + 1 end
1 Fatal error: exception Undefined_recursive_module

Or it can be raised later, if the dummy function is never back-patched:

1 module rec X : sig val f : unit → int end = struct include X end
2 (* later *)
3 let fail = X.f ()

6.2 Other features

In this section, we briefly present the remaining features that have not been covered yet.
We start with the interaction between the core and module language in Section 6.2.1. In
Section 6.2.2, we discuss the features for signature manipulation.

6.2.1 Core and module language interactions

The separation between the core and module languages makes modules second-class citizens:
they cannot be handled directly by core-language expressions. We present some features
designed to facilitate interactions between the two language layers.

Local modules The stratification prevents interleaving module and value definitions. To
allow for the definition of a module within a value definition, OCaml features a local module
construct, using the let module keyword:

1 let f (x:int) =
2 let module M = struct let y = 42 + x end in
3 M.y + x
1 val f : int → int = <fun>

Similarly to the open construct (see Section 6.1.2), the resulting type cannot refer to the
locally bound module, as it would otherwise escape it scope. For instance:

1 let f (x: int) =
2 let module M = struct open struct (type t = A of int | B of bool end) in

162 CHAPTER 6. ADVANCED FEATURES

3 M.A(x + 1)
1 Error: The type constructor M.t would escape its scope

This constitutes a limited case of avoidance, as we only need to avoid names in a core-language
type, not a whole signature3. Local modules become useful if the core-language can handle
module directly, which is the goal of the next feature.

First-class modules So far, modules are considered as second-class citizens of the core-
language: they cannot be stored as values nor returned by functions. This makes the module
language completely separated from the core language: there is no way to choose a module
based on a dynamic value. To remedy this problem, first-class modules4 were introduced by
Russo [2000] and well studied since then [Dreyer et al., 2003; Rossberg et al., 2014; Rossberg,
2006] (among other). They were added in OCaml 3.12. There are two key constructs:
one to turn a module into a core-language value (making it first-class) and one to turn a
core-language value back into a module. A typical use-case is the dynamic choice of an
implementation (based on a core-language value):

1 module type Map = ...
2 let m1 = (module ListMap : Map) (* core-language value *)
3 let m2 = (module HashMap : Map) (* core-language value *)
4 let n = ... (* computation *)
5

6 module G = (val (if n < threshold then m1 else m2) : Map)
1 val m1 : (module Map)
2 val m2 : (module Map)
3 module G : Map

The modules ListMap and HashMap are turned into core-language values m1 and m2 with the
construct (module M : S), where the signature S must be provided (and, in OCaml, must be
a module-type name). Conversely, first-class modules are turned back into modules with the
construct (val m : S), where, again, the signature S must be provided (and be a module-type
name). A new core-language type of the from (module S) is added.

The other common pattern is to use local modules to unpack a first-class module argument
inside a function, as in:

1 let f (m : (module Map)) =
2 let module M = (val m) in
3 ... (* use M *)

The types of first class modules are associated with a new form of subtyping in the core-
language: (module S1) can be a subtype of (module S2) even if S1 and S2 are not (syntactically)
equal. The signatures must be mutual subtypes and there should be no reordering of value
field (types and module types fields can be reordered). This is done to ensure that there is
a code-free coercion from a module of signature S1 to a module of signature S2: a module
of signature S1 could be seen as S2 without changing its dynamic representation. Hence, we
have for instance:

1 module type S1 = sig type t = int val x : t val y : bool end
2 module type S2 = sig val x : int val y : bool type t = int end
3

4 let f : (module S1) → (module S2) = fun x → x
1 val f : (module S1) → (module S2) = <fun>

3This remains true with first-class modules, as they are associated with a named module-type, not an
inferred signature.

4Sometimes called packaged modules.

6.2. OTHER FEATURES 163

Overall, first-class modules are a relatively small extension of the language, only requiring
two new constructs and the introduction of a new core-language type, but they are quite
powerful. As presented in Yallop and Kiselyov [2010], they allow to encode existential types,
polymorphic recursion, GADTs, and some form of generic programming.

Modular explicits/implicits Yet, first-class modules are limited, as (1) types coming
from first-class module arguments cannot appear in the resulting type of functions and (2)
they do not permit polymorphism over abstract types of module parameters of core-language
functions. One could say “taking a first-class module as input does not make one a first-class
functor”. Overall, it means that first-class modules cannot be used as (possibly implicit) type-
class parameters, like it is done in Scala [Oliveira et al., 2010], while Dreyer et al. [2007] have
shown that ML modules could encode Haskell-like type-classes. To lift those restriction, a
new feature called modular implicits was proposed by White et al. [2014]: module arguments
to core-language functions could be automatically inferred from a base of implicit modules
and functors. This would provide a (controlled) type-classes-like mechanism, with, among
other things, ad-hoc polymorphism. To represent the module arguments that can appear in
the domain and the codomain of function types, the language requires module-dependent types
and first-class functors, which is often summed up as modular explicits [Vivien et al., 2024].
Modular implicit is currently being researched, as it poses both theoretical and practical
challenges. One key challenge of inference is to ensure that the solution is unique, up to a
certain notion of module equivalence. Here, it would make sense to reuse the notion of module
equivalence based on aliasing, as discussed in Section 2.2.4. Overall, it would undoubtedly
expand the interaction between the core and module languages in a powerful way, and make
for a great extension to OCaml. In the language Scala, the implicit arguments (and implicit
coercions) have become a widely used feature of the language [Křikava et al., 2019] (98% of
the studied Scala projects use implicits, and 78% define new implicits).

1ML The stratification between the core and module language can even be questioned
altogether: is it an historical artifact or is technically justified? An interesting stance is taken
by Rossberg [2018], who shows that the core and module languages can be unified in a single
language without (significant) loss of expressivity or inference. In 1ML, modules and core-
language values co-exist, and are distinguished at the type level by a light form of predicativity.
It has been extended with recursivity [Jaakkola, 2020]. This approach is appealing and could
be the base of a new language. More research is needed to see if it could scale to all the
features of ML modules. In practice, the stratification between core and module languages
has also benefits regarding maintenance, as it (relatively) separates the features from the two
languages levels, which makes it easier to work on one without having to worry about the
other.

 C First-class modules: allow the core-language to handle modules, and the module
language to depend on core-language values.

 C Local modules: allow an interleaving of core and module definitions. Especially
useful to unpack a first-class module inside a value definition.

+ C Modular explicits: enable module-dependent types and module-polymorphic func-
tions (a.k.a. first-class functors).

+ C Modular implicits: provide a automatic resolution of module arguments, with the
convenience of type-classes without restricting the module language.

6.2.2 Extending the signature language

In this section we present some extensions of the signature language. First, we consider
signature modifiers: their key objective is to allow the user to modify and compose existing

164 CHAPTER 6. ADVANCED FEATURES

signatures without having to rewrite them from scratch. In practice, it is essential as rewriting
whole signatures would be extremely cumbersome and verbose, and it allows for more sharing
of signatures within the typechecker. Second, we discuss parametric signatures.

Modifying signatures A very complete overview of all features for handling signatures
can be found in Ramsey et al. [2005]. The ones present in OCaml are:

• Flat composition: similarly to module composition, one can import all the fields of a
structural signature inside another one with the include operator:

1 module type T = sig type t val x : t end
2 module type T’ = sig include T val y : t end
1 module type T’ = sig type t val x : t val y : t end

• Substitutions: one can change an abstract type field into a concrete one by using
the with type t = ... construct:

1 module type T = (sig type t val x : t end) with type t = A of int | B of bool
1 module type T = sig type t = int val x : t end

Similarly, one can change an abstract module-type field into a concrete one by us-
ing the with module type construct, and one can add aliasing information by using
the with module construct.

• Destructive substitutions: one can replace a type field by a manifest type definition
and remove the corresponding field, using the with type t := ... (note the “:=” instead
of “=”):

1 module type T = (sig type t val x : t end) with type t := int
1 module type T = sig val x : int end

Similarly, one can do a destructive substitution of a module-type field (using the con-
struct with module type T := S) and replace a module binding with an alias (using the
construct with module X := P).

• Local definitions: one can define local aliases for types inside a signature with the
declaration type t := ..., as in:

1 module type T = sig type t := int * int val x : t * t end
1 module type T = sig val x : (int * int) * (int * int) end

The local alias can be used to write the rest of the signature but is then inlined (it does
not appear in the resulting signature). The construct also exists for module types and
aliasing information.

Subsuming and completing those, Ramsey et al. [2005] proposes a complete set of constructs
to (1) change translucency (adding or removing type equalities), (2) add, remove or change
fields, and (3) define local short names inside a signature. For completeness, we also mention
the proposal5 for a strengthening construct S with P that rewrites all abstract type fields to
point to the same field in the module at path P.

Overall, the key design point from a language perspective is not how many constructs are
provided, but rather which ones are kept in the internal representation of types and which
ones are elaborated away 6. The main motivation behind the proposal for lazy strengthening

5https://github.com/ocaml-flambda/flambda-backend/pull/1337
6Some constructs are just syntactic sugar, but most require a context-sensitive rewriting of the signature.

That’s why we say that those are elaborated away.

https://github.com/ocaml-flambda/flambda-backend/pull/1337

6.2. OTHER FEATURES 165

was the possibility of sharing signature: instead of duplicating a (possibly large) signature,
only the “diff” is stored.

Parametric signatures Just as parametric types can be useful in the core language, one
can want parametric signatures: i.e., signatures that take as input a type (or module-type)
parameter. The substitution mechanism presented above can be used to “mimic” parametric
signatures. Indeed, one can add an abstract type field for each parameter and “instantiate”
with destructive substitutions (which effectively removes the corresponding type field). For
instance:

1 module type T = sig
2 type t (* used as a parameter *)
3 type u = t * t
4 val x : u
5 end
6 module X : (T with type t := int) = ...
1 module X : sig type u = int * int val x : u end

However, this approach has two downsides: it uses a non α-convertible binding (the type
field t has a fixed name) and does not rely on kinds to force the signature to be used for a
module only when fully instantiated. Instead, we advocate for truly parametric signatures,
which could look like:

1 module type ’a T = sig type u = ’a * ’a val x : u end

The type-system would then recognize T as being of a higher kind : no module can have T as
a signature, only instances of T, of the form (int T), (bool T), etc. However, it should be
noted that we have not explored the interaction between parametric signatures and abstract
signatures, and we fear that it might be problematic7. Besides, parametric signatures that
take higher-order types as parameters would lead to the higher-order unification problem
during subtyping.

 F Signature manipulation: following Ramsey et al. [2005], we advocate for an ex-
pressive language of signatures. Some constructs should be elaborated away, while some
should be kept (as long as possible) throughout the typechecking process, to increase
sharing of signatures inside the typechecker.

+ C Parametric signatures: useful in practice, they should be restricted to maintain
decidability of subtyping.

6.2.3 Interacting with the inference of signatures

Up until now, the interaction between the user and the type-system were binary: either the
user accepts the inferred signature, or it forces a user-written one via ascription. Yet, there
are use-cases for a richer interaction.

Using the result of inference One can get the result of the inference of any module
expression by using the construct module type of, as in:

1 module X = struct type t = int end
2 module F (Y : sig type t end) = struct type u = Y.t * bool end
3 module type T = module type of F(X)
1 module type T = sig type u = int * bool end

7Our treatment of abstract signatures in Section 4.5 only supports non-parametric signatures.

166 CHAPTER 6. ADVANCED FEATURES

This effectively injects module expressions inside signatures, as one can get the module type
of any module expression. In OCaml, there is a special case for module expressions that
“introduce” abstract types: module type of then returns a signature with abstract type fields,
while it otherwise returns a signature with concrete type fields. For instance, we have:

1 module X = struct type t end (* abstract type binding *)
2 module X’ = X
3

4 module type T = module type of X
5 module type T’ = module type of X’
1 module type T = sig type t end
2 module type T’ = sig type t = X.t end

This behavior can be understood syntactically, but makes the construct very sensible to the
order of definitions. Indeed, it gives a special role to some paths, and breaks some expected
properties of the construct. Notably, module type of is not the inverse of ascription: for
a module expression M, doing an ascription with the module type of itself can remove type
equalities: (M:module type of M) does not have the same signature as M. For instance, we have:

1 module X = struct type t end
2 module X1 = X
3 module X2 = (X: module type of X)
1 module X : sig type t end
2 module X1 : sig type t = X.t end
3 module X2 : sig type t end (* lost type equality ! *)

In our quest for regularity, we think the construct should be made simpler by always returning
the signature with all type equalities (the strengthened signature). In the above example, we
should have module type of X resolved to sig type t = X.t end. The user could then use the
signature modifiers of Section 6.2.2 to make some type fields abstract if needed.

Tweaking inference Sometimes, the result of the inference is almost the desired signature.
Yet, in order to get exactly the desired signature, the user has to use an explicit ascription.
This is cumbersome, especially at the top-level of a file. Instead, we advocate for constructs
to change type declarations in the inferred signature, by making them abstract or private.
This could look like:

1 module M = struct
2 type t = int [export as abstract]
3 type v = bool [export as private]
4 end
1 module M : sig type t type v = private bool end

Removing fields from the resulting signature can already be achieved with open. Another
option is to reuse the signature modifiers of Ramsey et al. [2005], and, as they suggest in
section 6.2, extend them to act on the inferred signature of a module.

Overall, we have the following features

 C Getting the result of inference: the user should be able to get the signature
of any module expression that does not introduce new abstract types. This signature
should be strengthened to have no abstract type field.

+ C Inference tweakers: the user should be able to change the result of inference
without having to use an explicit ascription.

Chapter 7

Conclusion

We have presented an overview of the main challenges of ML modules, and, to tackle those
challenges, two type systems: Mω and ZipML. Those type systems allowed us to explore
different ways of representing abstraction and scopes, with similar expressivity but different
practical trade-offs. A question remains: is one better than the other? Overall, we think they
serve different purposes. Mω is standardized, as it uses standard Fω type-sharing mechanisms
that are easy to understand. Once the intellectual effort of having a specification by elabo-
ration is digested, it allows one to build a logical intuition of the typechecking of modules.
The only “difficult” point that remains is extrusion. It is well suited to serve as a (relatively)
simple model of a module language for other formalization efforts aimed at specifying OCaml
(or other ML dialects). Overall, I like to think of Mω as a general purpose, standard module
system.

By contrast, ZipML can be seen as a specialized module system, designed for modeling
a real-world implementation. ZipML embraces a natural intuition for type-systems: the
internal representation of types for typechecking should be the same as the external language
of types. It assumes the added complexity that comes with this choice: a practical language
for writing signatures is not necessarily practical for a typechecker.

Despite a significant difference in presentation, the two systems also have a lot in common.
At a high-level, both rely on a shared idea: once introduced, abstract types will survive
modifications of the signature, regardless of whether or not an anchoring point is visible.
ZipML implements this idea lazily, introducing floating fields on demand (when projecting),
while Mω introduces abstract type variables eagerly.

Future works

In this section we discuss future works and perspectives.

Missing features

If we look back at the wish-list established throughout Chapter 2, there are two main features
that have been left out of this work: recursive composition and modular implicits. The latter
is more of a core-language feature and could probably fit well with either Mω or ZipML, as it
mostly relies on module paths and a good criterion for module equivalence, which are treated
similarly in both type systems.

Recursive composition, however, is a key difficult feature that is covered by neither Mω nor
ZipML. While some works have paved the way for general recursive composition, culminating
in the Rossberg and Dreyer [2013] paper, future research is needed to understand the possible
interaction with applicative functors (especially when sealing inside applicative functors). We
believe that there is an unexplored sweet spot where recursive and sequential composition co-
exists, such that users can benefit from the best of both worlds: the simplicity of sequential
composition for most use-cases, and the flexibility of recursive composition for advanced ones.

Finally, in both Mω and ZipML, we adopted a strict, no-loss of type-sharing criterion
for anchoring in Mω and for the simplification of zippers in ZipML. However, as pointed out
in Section 4.6, there seems to be harmless losses of type-sharing: cases where loosing type

167

168 CHAPTER 7. CONCLUSION

equalities is not observable by the module language. Characterizing those cases and proving
that they are indeed harmless would constitute interesting and novel research.

Implementation

The obvious follow-up of this work is to implement Mω and ZipML as typecheckers. After
proposing Mω, the feedback from the OCaml community was mixed: while interesting, the
design was not seen a short or mid-term replacement for the module part of the typechecker,
notably because it departed from the current syntactic approach quite significantly. It was
considered as a long-term (and thus, uncertain) proposal. The key concern was that switching
to an Mω-based solution would drastically affect the performance of the typechecker, and also
require technical changes to the core language (especially if qualified type names were to be
removed in favor of abstract type variables).

This mixed feedback played a role in motivating the research effort that led to ZipML.
Benefiting from the insights of Mω and the technical novelty of zipper signatures, ZipML was
designed with two main constraints in mind from the beginning: maintaining performance of
typechecking and limiting the interaction with the core-language to its absolute minimum.
While the former is achieved by preventing duplication and inlining of signatures, the latter
was obtained by making the notion of type declaration as general as possible, only requiring
knowing if a type is inline-able or not.

We believe that, while Mω could be the base of a new typechecker, ZipML could be imple-
mented in current OCaml. Such endeavor would be approached by successive steps. First,
implementing transparent signatures and differentiation between static and dynamic aliases.
Then, zipper signatures could be added, with a trivial simplification algorithm that only
garbage collects and inlines floating fields. This would already allow for a delayed avoidance.
Finally, the full-fledged simplification algorithm could be added.

Mechanization

This work could benefit from mechanization in several ways:

• Soundness of a module system with sealing inside applicative functors: Mech-
anizing the soundness proof of the generative subset would not be of much interest, as
it has already been done in F-ing (Rossberg et al. [2014]). However, using transparent
existentials in a mechanized proof of soundness of the applicative functors have not been
done. We hope that our claims regarding proof factorization between applicative and
generative cases would materialize. It would also be insightful to compare such proofs
with the ones of Crary [2020], who uses a system based on singleton kinds.

• Semantic model: Type safety of Fω is not sufficient to prove abstraction safety. While
our identity tags or the phantom types of F-ing (Rossberg et al. [2014]) hints at ab-
straction safety, it does not provide a satisfactory theorem. Indeed, we would like to be
able to attach to an abstract type an arbitrary predicate, and show that, as soon as it
is validated by the functions and values of the module, it cannot be invalidated later
on. We believe that building a semantic model of Mω types could help conducting such
proof.

• Interoperability: Besides the gained confidence, providing a standardized and reusable
mechanized proof of soundness for the module language could be very useful to other
formalization efforts aimed at proving OCaml code – a topic of quickly growing impor-
tance.

169

Bridging the gap with other languages

This work was done with the goal of improving the situation of ML-modules in mind, hoping
that it would also serve other languages in the long run. The example of Scala has shown
that the power of ML modules can inspire other designs outside of its community. We think
exploring further how the features presented in this thesis can be imported in other contexts
is an interesting and impactful research topic.

User studies

One significant challenge in the discussion about the redesign of ML modules is the lack
of user studies. Comparing SML and OCaml alone is insufficient to evaluate the impact
of applicative functors, for instance. This blind spot – designing languages based primarily
on theoretical principles while insufficiently incorporating user-feedback – is not specific to
module systems. However, the nature of modular programming exacerbates this issue, as
the advantages and drawbacks of language design become apparent only at larger scales, and
having users write large modular programs for a study seems a lot to ask. I believe that finding
new ways to embrace the human-psychological and sociological aspects of programming in the
design of languages constitutes interesting and under-explored research.

Bibliography

Sandip K. Biswas. 1995. Higher-Order Functors with Transparent Signatures. In Proceedings
of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(San Francisco, California, USA) (POPL ’95). Association for Computing Machinery, New
York, NY, USA, 154–163. https://doi.org/10.1145/199448.199478

Clément Blaudeau and Fengyun Liu. 2022. A conceptual framework for safe object initial-
ization: a principled and mechanized soundness proof of the Celsius model. Proc. ACM
Program. Lang. 6, OOPSLA2, Article 151 (Oct. 2022), 29 pages. https://doi.org/10.
1145/3563314

Clément Blaudeau, Didier Rémy, and Gabriel Radanne. 2024. Fulfilling OCaml Modules with
Transparency. Proc. ACM Program. Lang. 8, OOPSLA1, Article 101 (apr 2024), 29 pages.
https://doi.org/10.1145/3649818

Gérard Boudol. 2004. The recursive record semantics of objects revisited. Jour-
nal of Functional Programming 14, 3 (2004), 263–315. https://doi.org/10.1017/
S0956796803004775

Karl Crary. 2020. A focused solution to the avoidance problem. Journal of Functional Pro-
gramming 30 (2020), e24. https://doi.org/10.1017/S0956796820000222

Karl Crary, Robert Harper, and Sidd Puri. 1999. What is a recursive module? SIGPLAN
Not. 34, 5 (may 1999), 50–63. https://doi.org/10.1145/301631.301641

Derek Dreyer. 2007a. Recursive type generativity. Journal of Functional Programming 17,
4-5 (2007), 433–471. https://doi.org/10.1017/S0956796807006429

Derek Dreyer. 2007b. A type system for recursive modules. SIGPLAN Not. 42, 9 (oct 2007),
289–302. https://doi.org/10.1145/1291220.1291196

Derek Dreyer, Karl Crary, and Robert Harper. 2003. A type system for higher-order modules.
In Conference Record of POPL 2003: The 30th SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, New Orleans, Louisisana, USA, January 15-17, 2003, Alex
Aiken and Greg Morrisett (Eds.). ACM, 236–249. https://doi.org/10.1145/604131.
604151

Derek Dreyer, Robert Harper, Manuel M. T. Chakravarty, and Gabriele Keller. 2007. Modular
Type Classes. In Proceedings of the 34th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’07). ACM, New York, NY, USA, 63–70.
https://doi.org/10.1145/1190216.1190229 event-place: Nice, France.

Derek Dreyer, Robert Harper, and Karl Crary. 2005. Understanding and evolving the ML
module system. Ph. D. Dissertation. USA. AAI3166274.

Jacques Garrigue and Didier Rémy. 2012. Tracing ambiguity in GADT type inference. (June
2012).

Robert Harper and Mark Lillibridge. 1994. A Type-Theoretic Approach to Higher-Order
Modules with Sharing. In Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (Portland, Oregon, USA) (POPL ’94). Association
for Computing Machinery, New York, NY, USA, 123–137. https://doi.org/10.1145/
174675.176927

171

https://doi.org/10.1145/199448.199478
https://doi.org/10.1145/3563314
https://doi.org/10.1145/3563314
https://doi.org/10.1145/3649818
https://doi.org/10.1017/S0956796803004775
https://doi.org/10.1017/S0956796803004775
https://doi.org/10.1017/S0956796820000222
https://doi.org/10.1145/301631.301641
https://doi.org/10.1017/S0956796807006429
https://doi.org/10.1145/1291220.1291196
https://doi.org/10.1145/604131.604151
https://doi.org/10.1145/604131.604151
https://doi.org/10.1145/1190216.1190229
https://doi.org/10.1145/174675.176927
https://doi.org/10.1145/174675.176927

172 BIBLIOGRAPHY

Robert Harper, Robin Milner, and Mads Tofte. 1987. A type discipline for program modules.
In TAPSOFT ’87, Hartmut Ehrig, Robert Kowalski, Giorgio Levi, and Ugo Montanari
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 308–319.

Robert Harper, John C. Mitchell, and Eugenio Moggi. 1989. Higher-Order Modules and
the Phase Distinction. In Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (San Francisco, California, USA) (POPL ’90).
Association for Computing Machinery, New York, NY, USA, 341–354. https://doi.org/
10.1145/96709.96744

Robert Harper and Christopher A. Stone. 2000. A type-theoretic interpretation of standard
ML. In Proof, Language, and Interaction. https://api.semanticscholar.org/CorpusID:
9208816

Tom Hirschowitz and Xavier Leroy. 2005. Mixin modules in a call-by-value setting. ACM
Trans. Program. Lang. Syst. 27, 5 (Sept. 2005), 857–881. https://doi.org/10.1145/
1086642.1086644

GÉRARD HUET. 1997. The Zipper. Journal of Functional Programming 7, 5 (1997), 549–554.
https://doi.org/10.1017/S0956796897002864

Hyeonseung Im, Keiko Nakata, Jacques Garrigue, and Sungwoo Park. 2011. A syntactic
type system for recursive modules. SIGPLAN Not. 46, 10 (oct 2011), 993–1012. https:
//doi.org/10.1145/2076021.2048141

Pauli Jaakkola. 2020. A Type System for First-Class Recursive ML Modules. Master’s thesis.
https://trepo.tuni.fi/bitstream/handle/10024/123958/JaakkolaPauli.pdf

Filip Křikava, Heather Miller, and Jan Vitek. 2019. Scala implicits are everywhere: a large-
scale study of the use of Scala implicits in the wild. Proc. ACM Program. Lang. 3, OOPSLA,
Article 163 (Oct. 2019), 28 pages. https://doi.org/10.1145/3360589

Xavier Leroy. 1994. Manifest Types, Modules, and Separate Compilation. In Proceedings of
the 21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(Portland, Oregon, USA) (POPL ’94). Association for Computing Machinery, New York,
NY, USA, 109–122. https://doi.org/10.1145/174675.176926

Xavier Leroy. 1995. Applicative functors and fully transparent higher-order modules. In Pro-
ceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages - POPL ’95. ACM Press, San Francisco, California, United States, 142–153.
https://doi.org/10.1145/199448.199476

Xavier Leroy. 2000. A modular module system. J. Funct. Program. 10, 3 (2000), 269–303.
http://journals.cambridge.org/action/displayAbstract?aid=54525

Xavier Leroy. 2003. A proposal for recursive modules in Objective Caml. Available from the
author’s website (2003).

Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérôme
Vouillon. 2024. The OCaml system. https://ocaml.org/manual/index.html

Runhang Li and Jeremy Yallop. 2017. Extending OCaml’s ’open’. In Proceedings ML Family
/ OCaml Users and Developers workshops, ML/OCaml 2017, Oxford, UK, 7th September
2017 (EPTCS, Vol. 294), Sam Lindley and Gabriel Scherer (Eds.). 1–14. https://doi.
org/10.4204/EPTCS.294.1

https://doi.org/10.1145/96709.96744
https://doi.org/10.1145/96709.96744
https://api.semanticscholar.org/CorpusID:9208816
https://api.semanticscholar.org/CorpusID:9208816
https://doi.org/10.1145/1086642.1086644
https://doi.org/10.1145/1086642.1086644
https://doi.org/10.1017/S0956796897002864
https://doi.org/10.1145/2076021.2048141
https://doi.org/10.1145/2076021.2048141
https://trepo.tuni.fi/bitstream/handle/10024/123958/JaakkolaPauli.pdf
https://doi.org/10.1145/3360589
https://doi.org/10.1145/174675.176926
https://doi.org/10.1145/199448.199476
http://journals.cambridge.org/action/displayAbstract?aid=54525
https://ocaml.org/manual/index.html
https://doi.org/10.4204/EPTCS.294.1
https://doi.org/10.4204/EPTCS.294.1

BIBLIOGRAPHY 173

Fengyun Liu. 2020. Safe initialization of objects. (2020), 168. https://doi.org/10.5075/
epfl-thesis-8265

Fengyun Liu, Ondřej Lhoták, David Hua, and Enze Xing. 2023. Initializing Global Ob-
jects: Time and Order. Proc. ACM Program. Lang. 7, OOPSLA2, Article 268 (Oct. 2023),
28 pages. https://doi.org/10.1145/3622844

Fengyun Liu, Ondřej Lhoták, Aggelos Biboudis, Paolo G. Giarrusso, and Martin Odersky.
2020. A type-and-effect system for object initialization. 4 (2020), 1–28. Issue OOPSLA.
https://doi.org/10.1145/3428243

Fengyun Liu, Ondřej Lhoták, Enze Xing, and Nguyen Cao Pham. 2021. Safe object initializa-
tion, abstractly. In Proceedings of the 12th ACM SIGPLAN International Symposium on
Scala. Association for Computing Machinery, 33–43. https://doi.org/10.1145/3486610.
3486895

Anton Lorenzen, Leo White, Stephen Dolan, Richard A. Eisenberg, and Sam Lindley. 2024.
Oxidizing OCaml with Modal Memory Management. Proc. ACM Program. Lang. 8, ICFP,
Article 253 (aug 2024), 30 pages. https://doi.org/10.1145/3674642

Robin Milner. 1972. Implementation and applications of Scott’s logic for computable func-
tions. SIGPLAN Not. 7, 1 (Jan. 1972), 1–6. https://doi.org/10.1145/942578.807067

Robin Milner, Mads Tofte, and Robert Harper. 1990. The Definition of Standard ML (revised).
MIT Press, Cambridge, MA, USA.

Robin Milner, Mads Tofte, and David Macqueen. 1997. The Definition of Standard ML. MIT
Press, Cambridge, MA, USA. https://doi.org/10.7551/mitpress/2319.003.0001

John C. Mitchell. 1988. Polymorphic type inference and containment. Information and Com-
putation 76, 2 (1988), 211–249. https://doi.org/10.1016/0890-5401(88)90009-0

John C. Mitchell and Gordon D. Plotkin. 1985. Abstract Types Have Existential Types. In
Proceedings of the 12th ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages (New Orleans, Louisiana, USA) (POPL ’85). Association for Computing
Machinery, New York, NY, USA, 37–51. https://doi.org/10.1145/318593.318606

Jeffrey C. Mogul. 2006. Emergent (mis)behavior vs. complex software systems. SIGOPS Oper.
Syst. Rev. 40, 4 (April 2006), 293–304. https://doi.org/10.1145/1218063.1217964

Benoît Montagu. 2010. Programming with first-class modules in a core language with sub-
typing, singleton kinds and open existential types. (Programmer avec des modules de pre-
mière classe dans un langage noyau pourvu de sous-typage, sortes singletons et types
existentiels ouverts). PhD Thesis. École Polytechnique, Palaiseau, France. https:
//tel.archives-ouvertes.fr/tel-00550331

Benoît Montagu and Didier Rémy. 2009. Modeling Abstract Types in Modules with Open
Existential Types. In Proceedings of the 36th ACM Symposium on Principles of Program-
ming Languages (POPL’09). Savannah, GA, USA, 354–365. https://doi.org/10.1145/
1480881.1480926

Keiko Nakata and Jacques Garrigue. 2006. Recursive Modules for Programming. (2006), 13.

Bruno C.d.S. Oliveira, Adriaan Moors, and Martin Odersky. 2010. Type classes as objects
and implicits. SIGPLAN Not. 45, 10 (Oct. 2010), 341–360. https://doi.org/10.1145/
1932682.1869489

https://doi.org/10.5075/epfl-thesis-8265
https://doi.org/10.5075/epfl-thesis-8265
https://doi.org/10.1145/3622844
https://doi.org/10.1145/3428243
https://doi.org/10.1145/3486610.3486895
https://doi.org/10.1145/3486610.3486895
https://doi.org/10.1145/3674642
https://doi.org/10.1145/942578.807067
https://doi.org/10.7551/mitpress/2319.003.0001
https://doi.org/10.1016/0890-5401(88)90009-0
https://doi.org/10.1145/318593.318606
https://doi.org/10.1145/1218063.1217964
https://tel.archives-ouvertes.fr/tel-00550331
https://tel.archives-ouvertes.fr/tel-00550331
https://doi.org/10.1145/1480881.1480926
https://doi.org/10.1145/1480881.1480926
https://doi.org/10.1145/1932682.1869489
https://doi.org/10.1145/1932682.1869489

174 BIBLIOGRAPHY

Benjamin C. Pierce. 2004. Advanced Topics in Types and Programming Languages. The MIT
Press.

Xin Qi and Andrew C. Myers. 2009. Masked types for sound object initialization. In Pro-
ceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2009, Savannah, GA, USA, January 21-23, 2009, Zhong Shao and Ben-
jamin C. Pierce (Eds.). ACM, 53–65. https://doi.org/10.1145/1480881.1480890

Norman Ramsey, Kathleen Fisher, and Paul Govereau. 2005. An expressive language of sig-
natures. SIGPLAN Not. 40, 9 (Sept. 2005), 27–40. https://doi.org/10.1145/1090189.
1086371

Alban Reynaud, Gabriel Scherer, and Jeremy Yallop. 2021. A practical mode system for re-
cursive definitions. 5 (2021), 45:1–45:29. Issue POPL. https://doi.org/10.1145/3434326

Andreas Rossberg. 2006. The missing link: dynamic components for ML. SIGPLAN Not. 41,
9 (sep 2006), 99–110. https://doi.org/10.1145/1160074.1159816

Andreas Rossberg. 2018. 1ML - Core and modules united. J. Funct. Program. 28 (2018), e22.
https://doi.org/10.1017/S0956796818000205

Andreas Rossberg and Derek Dreyer. 2013. Mixin’Up the ML Module System. ACM Trans.
Program. Lang. Syst. 35, 1 (April 2013), 2:1–2:84. https://doi.org/10.1145/2450136.
2450137

Andreas Rossberg, Claudio Russo, and Derek Dreyer. 2014. F-ing modules. Journal
of Functional Programming 24, 5 (Sept. 2014), 529–607. https://doi.org/10.1017/
S0956796814000264

Claudio V. Russo. 1996. Standard ML Type Generativity as Existential Quantification.
https://api.semanticscholar.org/CorpusID:14337913

Claudio V. Russo. 2000. First-Class Structures for Standard ML. Nord. J. Comput. 7, 4
(2000), 348–374.

Claudio V. Russo. 2001. Recursive structures for standard ML. SIGPLAN Not. 36, 10 (oct
2001), 50–61. https://doi.org/10.1145/507669.507644

Claudio V. Russo. 2004. Types for Modules. Electronic Notes in Theoretical Computer Science
60 (2004), 3–421. https://doi.org/10.1016/S1571-0661(05)82621-0

Didier Rémy and Jérôme Vouillon. 1997. Objective ML: A simple object-oriented extension of
ML. In Proceedings of the 24th ACM Conference on Principles of Programming Languages.
Paris, France, 40–53.

Didier Rémy and Jérôme Vouillon. 1998. Objective ML: An effective object-oriented extension
to ML. Theory And Practice of Object Systems 4, 1 (1998), 27–50.

Chung-Chieh Shan. 2004. Higher-order modules in System Fω and Haskell. (01 2004).

Zhong Shao. 1999. Transparent Modules with Fully Syntactic Signatures. In Proceedings of
the fourth ACM SIGPLAN International Conference on Functional Programming (ICFP
’99), Paris, France, September 27-29, 1999. ACM, 220–232. https://doi.org/10.1145/
317636.317801

https://doi.org/10.1145/1480881.1480890
https://doi.org/10.1145/1090189.1086371
https://doi.org/10.1145/1090189.1086371
https://doi.org/10.1145/3434326
https://doi.org/10.1145/1160074.1159816
https://doi.org/10.1017/S0956796818000205
https://doi.org/10.1145/2450136.2450137
https://doi.org/10.1145/2450136.2450137
https://doi.org/10.1017/S0956796814000264
https://doi.org/10.1017/S0956796814000264
https://api.semanticscholar.org/CorpusID:14337913
https://doi.org/10.1145/507669.507644
https://doi.org/10.1016/S1571-0661(05)82621-0
https://doi.org/10.1145/317636.317801
https://doi.org/10.1145/317636.317801

BIBLIOGRAPHY 175

Alexander J. Summers and Peter Mueller. 2011. Freedom before commitment: a lightweight
type system for object initialisation. In Proceedings of the 2011 ACM international con-
ference on Object oriented programming systems languages and applications (New York,
NY, USA, 2011-10-22) (OOPSLA ’11). Association for Computing Machinery, 1013–1032.
https://doi.org/10.1145/2048066.2048142

Don Syme. 2006. Initializing Mutually Referential Abstract Objects: The Value Recursion
Challenge. Electron. Notes Theor. Comput. Sci. 148, 2 (2006), 3–25. https://doi.org/
10.1016/j.entcs.2005.11.038

Mads Tofte. 1990. Type inference for polymorphic references. Inf. Comput. 89, 1 (Sept. 1990),
1–34. https://doi.org/10.1016/0890-5401(90)90018-D

Samuel Vivien, Didier Rémy, Thomas Réfis, and Gabriel Scherer. 2024. On the design and
implementation of Modular Explicits. (Sept. 2024). https://cambium.inria.fr/~remy/
ocamod/implicits.html Presented at the OCaml 2024 workshop, available electronically.

Leo White, Frédéric Bour, and Jeremy Yallop. 2014. Modular implicits. In Proceedings ML
Family/OCaml Users and Developers workshops, ML/OCaml 2014, Gothenburg, Sweden,
September 4-5, 2014. 22–63. https://doi.org/10.4204/EPTCS.198.2

Jeremy Yallop and Oleg Kiselyov. 2010. First-class modules: hidden power and tantalizing
promises. (2010).

https://doi.org/10.1145/2048066.2048142
https://doi.org/10.1016/j.entcs.2005.11.038
https://doi.org/10.1016/j.entcs.2005.11.038
https://doi.org/10.1016/0890-5401(90)90018-D
https://cambium.inria.fr/~remy/ocamod/implicits.html
https://cambium.inria.fr/~remy/ocamod/implicits.html
https://doi.org/10.4204/EPTCS.198.2

	1. Introduction
	1.1. Thesis overview
	1.2. Contributions
	1.3. Research Output

	2. Features and challenges of a modern module system
	2.1. Basic modularity
	2.2. Functors and abstraction
	2.2.1. Applicative and Generative Functors
	2.2.2. Abstraction Safety and Granularity of Applicativity
	2.2.3. Module level equalities and aliasing
	2.2.4. Aliases and transparent ascription

	2.3. A Key Challenge: the Signature Avoidance Problem
	2.3.1. Introduction to the avoidance problem
	2.3.2. Strategies
	2.3.3. Avoidance with applicative functors
	2.3.4. Signature avoidance in practice

	2.4. Module-level abstraction
	2.4.1. Abstract signatures
	2.4.2. Challenges of abstract signatures
	2.4.3. Simple abstract signatures

	3. The ML source system
	3.1. Syntax
	3.1.1. Name-spaces
	3.1.2. Shadowing

	3.2. Semantics

	4. M
	4.1. The M type system
	4.1.1. Overview and technical details
	4.1.2. Signatures type-checking
	4.1.3. Subtyping
	4.1.4. Module Expressions type-checking

	4.2. Identity, Aliasing, and Type Abstraction
	4.2.1. A source-to-source transformation
	4.2.2. Derived typing system
	4.2.3. Property of identity tags

	4.3. Rebuilding Source Signatures
	4.3.1. The Expressiveness Gaps of the Source Syntax
	4.3.2. The Anchoring Process
	4.3.3. Properties of Anchoring

	4.4. The Foundations: F Elaboration
	4.4.1. F with Kind Polymorphism
	4.4.2. Encoding of Signatures
	4.4.3. Sharing Existential Types by Repacking
	4.4.4. Transparent Existential Types and Their Lifting Through Function Types
	4.4.5. Implementation of Transparent Existential Types in F
	4.4.6. Elaboration
	4.4.7. Properties of elaboration

	4.5. Abstract signatures
	4.5.1. Key intuitions of abstract signatures
	4.5.2. Extension of F
	4.5.3. Typing rules

	4.6. Discussion
	4.6.1. Signature artifacts

	5. ZipML
	5.1. Motivation and challenges of a syntactic system
	5.1.1. Signature avoidance
	5.1.2. Strengthening
	5.1.3. Lazy expansion of definitions

	5.2. An introduction to floating fields
	5.2.1. Expressivity
	5.2.2. Chaining zippers
	5.2.3. Zipper simplification

	5.3. Formal presentation
	5.3.1. Overview
	5.3.2. Grammar extensions
	5.3.3. Strengthening
	5.3.4. Path typing, resolution and normalization
	5.3.5. Subtyping
	5.3.6. Signature typing
	5.3.7. Module typing

	5.4. Resolving signature avoidance by zipper simplification
	5.4.1. Subtyping with zippers and narrow subtyping
	5.4.2. Simplification overview
	5.4.3. Dropping a field
	5.4.4. Moving away a field
	5.4.5. Splitting a field
	5.4.6. Skipping a field
	5.4.7. Simplification algorithm
	5.4.8. Preservation of typability

	5.5. Properties
	5.5.1. Soundness of ZipML by Elaboration in M
	5.5.2. Zipper renaming, introduction, and extrusion
	5.5.3. Completeness of ZipML with respect to M
	5.5.4. Other properties

	5.6. Discussion

	6. Advanced features
	6.1. Composition
	6.1.1. Hierarchical and flat composition
	6.1.2. Recursive composition

	6.2. Other features
	6.2.1. Core and module language interactions
	6.2.2. Extending the signature language
	6.2.3. Interacting with the inference of signatures

	7. Conclusion

